

Advances in Pattern Recognition

Advances in Pattern Recognition is a series of books which brings together
current developments in all areas of this multi-disciplinary topic. It covers
both theoretical and applied aspects of pattern recognition, and provides texts
for students and senior researchers.

Springer also publishes a related journal, Pattern Analysis and Applications.
For more details see: http://link.springer.de

The book series and journal are both edited by Professor Sameer Singh of
Exeter University, UK.

Also in this series:

Principles of Visual Information Retrieval
Michael S. Lew (Ed.)
1-85233-381-2

Statistical and Neural Classifiers: An Integrated Approach to Design
Šarūnas Raudys
1-85233-297-2

Advanced Algorithmic Approaches to Medical Image Segmentation
Jasjit Suri, Kamaledin Setarehdan and Sameer Singh (Eds)
1-85233-389-8

NETLAB: Algorithms for Pattern Recognition
Ian T. Nabney
1-85233-440-1

Object Recognition: Fundamentals and Case Studies
M. Bennamoun and G.J. Mamic
1-85233-398-7

Computer Vision Beyond the Visible Spectrum
Bir Bhanu and Ioannis Pavlidis (Eds)
1-85233-604-8

Hexagonal Image Processing: A Practical Approach
Lee Middleton and Jayanthi Sivaswamy
1-85233-914-4

Shigeo Abe

Support Vector
Machines for
Pattern
Classification
With 110 Figures

Professor Dr Shigeo Abe
Kobe University, Kobe, Japan

Series editor
Professor Sameer Singh, PhD
Department of Computer Science, University of Exeter, Exeter, EX4 4PT, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Abe, Shigeo, 1947–

Support vector machines for pattern classification / Shigeo Abe.
p. cm.

Includes bibliographical references and index.
ISBN 1-85233-929-9 (alk. paper)
1. Text processing (Computer science) 2. Pattern recognition systems. 3. Machine

learning. I. Title.
QA76.9.T48A23 2005
005.52—dc22 2005040265

Advances in Pattern Recognition ISSN 1617-7916
ISBN-10: 1-85233-929-2 Printed on acid-free paper
ISBN-13: 978-1-85233-929-6

© Springer-Verlag London Limited 2005

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regula-
tions and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Printed in the United States of America (SB)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

Preface

I was shocked to see a student’s report on performance comparisons between
support vector machines (SVMs) and fuzzy classifiers that we had developed
with our best endeavors. Classification performance of our fuzzy classifiers was
comparable, but in most cases inferior, to that of support vector machines.
This tendency was especially evident when the numbers of class data were
small. I shifted my research efforts from developing fuzzy classifiers with high
generalization ability to developing support vector machine–based classifiers.

This book focuses on the application of support vector machines to pat-
tern classification. Specifically, we discuss the properties of support vector
machines that are useful for pattern classification applications, several mul-
ticlass models, and variants of support vector machines. To clarify their ap-
plicability to real-world problems, we compare performance of most models
discussed in the book using real-world benchmark data. Readers interested in
the theoretical aspect of support vector machines should refer to books such
as [109, 215, 256, 257].

Three-layer neural networks are universal classifiers in that they can clas-
sify any labeled data correctly if there are no identical data in different classes
[3, 279]. In training multilayer neural network classifiers, network weights are
usually corrected so that the sum-of-squares error between the network out-
puts and the desired outputs is minimized. But because the decision bound-
aries between classes acquired by training are not directly determined, clas-
sification performance for the unknown data, i.e., the generalization ability,
depends on the training method. And it degrades greatly when the number
of training data is small and there is no class overlap.

On the other hand, in training support vector machines the decision
boundaries are determined directly from the training data so that the sepa-
rating margins of decision boundaries are maximized in the high-dimensional
space called feature space. This learning strategy, based on statistical learning
theory developed by Vapnik [256, 257], minimizes the classification errors of
the training data and the unknown data.

VI Preface

Therefore, the generalization abilities of support vector machines and other
classifiers differ significantly, especially when the number of training data is
small. This means that if some mechanism to maximize the margins of deci-
sion boundaries is introduced to non-SVM-type classifiers, their performance
degradation will be prevented when the class overlap is scarce or nonexistent.1

In the original support vector machine, an n-class classification problem
is converted into n two-class problems, and in the ith two-class problem we
determine the optimal decision function that separates class i from the re-
maining classes. In classification, if one of the n decision functions classifies
an unknown datum into a definite class, it is classified into that class. In this
formulation, if more than one decision function classify a datum into definite
classes, or if no decision functions classify the datum into a definite class, the
datum is unclassifiable.

Another problem of support vector machines is slow training. Because sup-
port vector machines are trained by solving a quadratic programming problem
with the number of variables equal to the number of training data, training
is slow for a large number of training data.

To resolve unclassifiable regions for multiclass support vector machines we
propose fuzzy support vector machines and decision-tree-based support vector
machines.

To accelerate training, in this book, we discuss two approaches: selection
of important data for training support vector machines before training and
training by decomposing the optimization problem into two subproblems.

To improve generalization ability of non-SVM-type classifiers, we introduce
the ideas of support vector machines to the classifiers: neural network training
incorporating maximizing margins and a kernel version of a fuzzy classifier
with ellipsoidal regions [3, pp. 90–3, 119–39].

In Chapter 1, we discuss two types of decision functions: direct decision
functions, in which the class boundary is given by the curve where the deci-
sion function vanishes; and the indirect decision function, in which the class
boundary is given by the curve where two decision functions take on the same
value.

In Chapter 2, we discuss the architecture of support vector machines for
two-class classification problems. First we explain hard-margin support vector
machines, which are used when the classification problem is linearly separable,
namely, the training data of two classes are separated by a single hyperplane.
Then, introducing slack variables for the training data, we extend hard-margin
support vector machines so that they are applicable to inseparable problems.
There are two types of support vector machines: L1 soft-margin support vec-
tor machines and L2 soft-margin support vector machines. Here, L1 and L2
denote the linear sum and the square sum of the slack variables that are
added to the objective function for training. Then we investigate the charac-

1To improve generalization ability of a classifier, a regularization term, which
controls the complexity of the classifier, is added to the objective function.

Preface VII

teristics of solutions extensively and survey several techniques for estimating
the generalization ability of support vector machines.

In Chapter 3, we discuss some methods for multiclass problems: one-
against-all support vector machines, in which each class is separated from
the remaining classes; pairwise support vector machines, in which one class
is separated from another class; the use of error-correcting output codes for
resolving unclassifiable regions; and all-at-once support vector machines, in
which decision functions for all the classes are determined at once. To resolve
unclassifiable regions, in addition to error-correcting codes, we discuss fuzzy
support vector machines with membership functions and decision-tree-based
support vector machines. To compare several methods for multiclass prob-
lems, we show performance evaluation of these methods for the benchmark
data sets.

Since support vector machines were proposed, many variants of support
vector machines have been developed. In Chapter 4, we discuss some of them:
least squares support vector machines whose training results in solving a set of
linear equations, linear programming support vector machines, robust support
vector machines, and so on.

In Chapter 5, we discuss some training methods for support vector ma-
chines. Because we need to solve a quadratic optimization problem with the
number of variables equal to the number of training data, it is impractical to
solve a problem with a huge number of training data. For example, for 10,000
training data, 800 MB memory is necessary to store the Hessian matrix in
double precision. Therefore, several methods have been developed to speed
training. One approach reduces the number of training data by preselecting
the training data. The other is to speed training by decomposing the problem
into two subproblems and repeatedly solving the one subproblem while fixing
the other and exchanging the variables between the two subproblems.

Optimal selection of features is important in realizing high-performance
classification systems. Because support vector machines are trained so that
the margins are maximized, they are said to be robust for nonoptimal features.
In Chapter 6, we discuss several methods for selecting optimal features and
show, using some benchmark data sets, that feature selection is important
even for support vector machines. Then we discuss feature extraction that
transforms input features by linear and nonlinear transformation.

Some classifiers need clustering of training data before training. But sup-
port vector machines do not require clustering because mapping into a feature
space results in clustering in the input space. In Chapter 7, we discuss how
we can realize support vector machine–based clustering.

One of the features of support vector machines is that by mapping the in-
put space into the feature space, nonlinear separation of class data is realized.
Thus the conventional linear models become nonlinear if the linear models are
formulated in the feature space. They are usually called kernel-based methods.
In Chapter 8, we discuss typical kernel-based methods: kernel least squares,
kernel principal component analysis, and the kernel Mahalanobis distance.

VIII Preface

The concept of maximum margins can be used for conventional classifiers
to enhance generalization ability. In Chapter 9, we discuss methods for max-
imizing margins of multilayer neural networks, and in Chapter 10 we discuss
maximum-margin fuzzy classifiers with ellipsoidal regions and polyhedral re-
gions.

Support vector machines can be applied to function approximation. In
Chapter 11, we discuss how to extend support vector machines to function
approximation and compare the performance of the support vector machine
with that of other function approximators.

Acknowledgments

We are grateful to those who are involved in the research project, conducted at
the Graduate School of Science and Technology, Kobe University, on neural,
fuzzy, and support vector machine–based classifiers and function approxima-
tors, for their efforts in developing new methods and programs. Discussions
with Dr. Seiichi Ozawa were always helpful. Special thanks are due to then
and current graduate and undergraduate students: T. Inoue, K. Sakaguchi, T.
Takigawa, F. Takahashi, Y. Hirokawa, T. Nishikawa, K. Kaieda, Y. Koshiba,
D. Tsujinishi, Y. Miyamoto, S. Katagiri, T. Yamasaki, T. Kikuchi, and K.
Morikawa; and Ph.D. student T. Ban.

I thank A. Ralescu for having used my draft version of the book as a
graduate course text and having given me many useful comments. Thanks are
also due to H. Nakayama, S. Miyamoto, J. A. K. Suykens, F. Anouar, G. C.
Cawley, H. Motoda, A. Inoue, F. Schwenker, N. Kasabov, and B.-L. Lu for
their valuable discussions and useful comments.

The Internet was a valuable source of information in writing the book.
Most of the papers listed in the References were obtained from the Internet,
from either authors’ home pages or free downloadable sites such as:

ESANN: www.dice.ucl.ac.be/esann/proceedings/electronicproceedings.htm
JMLR: www.jmlr.org/papers/
NEC Research Institute CiteSeer: citeseer.nj.nec.com/cs
NIPS: books.nips.cc/

Kobe, October 2004 Shigeo Abe

Contents

Preface . V
Nomenclature . 1

1 Introduction . 3
1.1 Decision Functions . 3

1.1.1 Decision Functions for Two-Class Problems 3
1.1.2 Decision Functions for Multiclass Problems 5

1.2 Determination of Decision Functions . 10
1.3 Data Sets Used in the Book . 11

2 Two-Class Support Vector Machines . 15
2.1 Hard-Margin Support Vector Machines . 15
2.2 L1 Soft-Margin Support Vector Machines 22
2.3 Mapping to a High-Dimensional Space . 25

2.3.1 Kernel Tricks . 25
2.3.2 Kernels . 27
2.3.3 Normalizing Kernels . 30
2.3.4 Properties of Mapping Functions Associated with

Kernels . 31
2.3.5 Implicit Bias Terms . 33

2.4 L2 Soft-Margin Support Vector Machines 37
2.5 Advantages and Disadvantages . 39

2.5.1 Advantages . 39
2.5.2 Disadvantages . 40

2.6 Characteristics of Solutions . 40
2.6.1 Hessian Matrix . 41
2.6.2 Dependence of Solutions on C . 42
2.6.3 Equivalence of L1 and L2 Support Vector Machines 47
2.6.4 Nonunique Solutions . 50
2.6.5 Reducing the Number of Support Vectors 58
2.6.6 Degenerate Solutions . 61

X Contents

2.6.7 Duplicate Copies of Data . 63
2.6.8 Imbalanced Data . 65
2.6.9 Classification for the Blood Cell Data 65

2.7 Class Boundaries for Different Kernels . 70
2.8 Developing Classifiers . 72

2.8.1 Model Selection . 73
2.8.2 Estimating Generalization Errors . 73
2.8.3 Sophistication of Model Selection . 77

2.9 Invariance for Linear Transformation . 77

3 Multiclass Support Vector Machines . 83
3.1 One-against-All Support Vector Machines 84

3.1.1 Conventional Support Vector Machines 84
3.1.2 Fuzzy Support Vector Machines . 85
3.1.3 Equivalence of Fuzzy Support Vector Machines and

Support Vector Machines with Continuous Decision
Functions . 89

3.1.4 Decision-Tree-Based Support Vector Machines 91
3.2 Pairwise Support Vector Machines . 96

3.2.1 Conventional Support Vector Machines 96
3.2.2 Fuzzy Support Vector Machines . 97
3.2.3 Performance Comparison of Fuzzy Support Vector

Machines . 98
3.2.4 Cluster-Based Support Vector Machines 101
3.2.5 Decision-Tree-Based Support Vector Machines 102
3.2.6 Pairwise Classification with Correcting Classifiers 112

3.3 Error-Correcting Output Codes . 113
3.3.1 Output Coding by Error-Correcting Codes 114
3.3.2 Unified Scheme for Output Coding 114
3.3.3 Equivalence of ECOC with Membership Functions 115
3.3.4 Performance Evaluation . 116

3.4 All-at-Once Support Vector Machines . 118
3.4.1 Basic Architecture . 118
3.4.2 Sophisticated Architecture . 120

3.5 Comparisons of Architectures . 122
3.5.1 One-against-All Support Vector Machines 122
3.5.2 Pairwise Support Vector Machines 123
3.5.3 ECOC Support Vector Machines . 123
3.5.4 All-at-Once Support Vector Machines 124
3.5.5 Training Difficulty . 124
3.5.6 Training Time Comparison . 127

Contents XI

4 Variants of Support Vector Machines . 129
4.1 Least Squares Support Vector Machines . 129

4.1.1 Two-Class Least Squares Support Vector Machines 129
4.1.2 One-against-All Least Squares Support Vector Machines132
4.1.3 Pairwise Least Squares Support Vector Machines 133
4.1.4 All-at-Once Least Squares Support Vector Machines . . . 134
4.1.5 Performance Comparison . 136

4.2 Linear Programming Support Vector Machines 140
4.2.1 Architecture . 140
4.2.2 Performance Evaluation . 143

4.3 Incremental Training . 146
4.4 Robust Support Vector Machines . 149
4.5 Bayesian Support Vector Machines . 149

4.5.1 One-Dimensional Bayesian Decision Functions 150
4.5.2 Parallel Displacement of a Hyperplane 151
4.5.3 Normal Test . 152

4.6 Committee Machines . 153
4.7 Confidence Level . 153
4.8 Visualization . 154

5 Training Methods . 155
5.1 Preselecting Support Vector Candidates . 155

5.1.1 Approximation of Boundary Data 156
5.1.2 Performance Evaluation . 158

5.2 Decomposition Techniques . 159
5.3 KKT Conditions Revisited . 162
5.4 Overview of Training Methods . 165
5.5 Primal-Dual Interior-Point Methods . 167

5.5.1 Primal-Dual Interior-Point Methods for Linear
Programming . 167

5.5.2 Primal-Dual Interior-Point Methods for Quadratic
Programming . 171

5.5.3 Performance Evaluation . 173
5.6 Steepest Ascent Methods . 178

5.6.1 Training Algorithms . 178
5.6.2 Sequential Minimal Optimization . 182
5.6.3 Training of L2 Soft-Margin Support Vector Machines . . 184
5.6.4 Performance Evaluation . 185

5.7 Training of Linear Programming Support Vector Machines 186
5.7.1 Primal-Dual Problems . 186
5.7.2 Training by Decomposition . 188

XII Contents

6 Feature Selection and Extraction . 189
6.1 Procedure for Feature Selection . 189
6.2 Feature Selection Using Support Vector Machines 190

6.2.1 Backward or Forward Feature Selection 190
6.2.2 Support Vector Machine–Based Feature Selection 193
6.2.3 Feature Selection by Cross-Validation 194

6.3 Feature Extraction . 195

7 Clustering . 201
7.1 Domain Description . 201
7.2 Extension to Clustering . 207

8 Kernel-Based Methods . 209
8.1 Kernel Least Squares . 209

8.1.1 Algorithm . 209
8.1.2 Performance Evaluation . 212

8.2 Kernel Principal Component Analysis . 215
8.3 Kernel Mahalanobis Distance . 218

8.3.1 SVD-Based Kernel Mahalanobis Distance 218
8.3.2 KPCA-Based Mahalanobis Distance 221

9 Maximum-Margin Multilayer Neural Networks 223
9.1 Approach . 223
9.2 Three-Layer Neural Networks . 224
9.3 CARVE Algorithm . 227
9.4 Determination of Hidden-Layer Hyperplanes 227

9.4.1 Rotation of Hyperplanes . 229
9.4.2 Training Algorithm . 231

9.5 Determination of Output-Layer Hyperplanes 232
9.6 Determination of Parameter Values . 233
9.7 Performance Evaluation . 233
9.8 Summary . 234

10 Maximum-Margin Fuzzy Classifiers . 237
10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 238

10.1.1 Conventional Fuzzy Classifiers with Ellipsoidal Regions 238
10.1.2 Extension to a Feature Space . 239
10.1.3 Transductive Training . 240
10.1.4 Maximizing Margins . 244
10.1.5 Performance Evaluation . 247
10.1.6 Summary. 252

10.2 Fuzzy Classifiers with Polyhedral Regions 253
10.2.1 Training Methods . 253
10.2.2 Performance Evaluation . 261

Contents XIII

11 Function Approximation . 265
11.1 Optimal Hyperplanes . 265
11.2 L1 Soft-Margin Support Vector Regressors 269
11.3 L2 Soft-Margin Support Vector Regressors 271
11.4 Training Speedup . 273
11.5 Steepest Ascent Methods . 274

11.5.1 Subproblem Optimization . 275
11.5.2 Convergence Check . 277

11.6 Candidate Set Selection . 278
11.6.1 Inexact KKT Conditions . 278
11.6.2 Exact KKT Conditions . 278
11.6.3 Selection of Violating Variables . 280

11.7 Variants of Support Vector Regressors . 280
11.7.1 Linear Programming Support Vector Regressors 281
11.7.2 ν-Support Vector Regressors . 281
11.7.3 Least Squares Support Vector Regressors 283

11.8 Performance Evaluation . 285
11.8.1 Evaluation Conditions . 285
11.8.2 Effect of Working Set Size on Speedup 286
11.8.3 Comparison of L1 and L2 Support Vector Regressors . . . 286
11.8.4 Comparison of Exact and Inexact KKT Conditions 288
11.8.5 Comparison with Other Training Methods 290
11.8.6 Performance Comparison with Other Approximation

Methods . 291
11.8.7 Robustness for Outliers . 294
11.8.8 Summary. 295

A Conventional Classifiers . 297
A.1 Bayesian Classifiers . 297
A.2 Nearest Neighbor Classifiers . 298

B Matrices . 301
B.1 Matrix Properties . 301
B.2 Least Squares Methods and Singular Value Decomposition 303
B.3 Covariance Matrices . 305

C Quadratic Programming . 309
C.1 Optimality Conditions . 309
C.2 Properties of Solutions . 310

D Positive Semidefinite Kernels and Reproducing Kernel
Hilbert Space . 313
D.1 Positive Semidefinite Kernels . 313
D.2 Reproducing Kernel Hilbert Space . 317

XIV Contents

References . 319

Index . 339

Nomenclature

We use lowercase bold letters to denote vectors and uppercase italic letters to
denote matrices. The following list shows the symbols used in the book:

αi : Lagrange multiplier for xi

ξi : slack variable associated with xi

A−1 : inverse of matrix A
AT : transpose of matrix A
B : set of bounded support vector indices
bi : bias term of the ith hyperplane
C : margin parameter
d : degree of a polynomial kernel
g(x) : mapping function from x to the feature space
γ : parameter for a radial basis function kernel
H(x,x′) : kernel
l : dimension of the feature space
M : number of training data
m : number of input variables
n : number of classes
S : set of support vector indices
U : set of unbounded support vector indices
‖x‖ : Euclidean norm of vector x
wi : coefficient vector of the ith hyperplane
Xi : set for class i training data
|Xi| : number of data in the set Xi

xi : ith m-dimensional training data
yi : class label 1 or −1 for input xi for pattern classification and a scalar

output for function approximation

1

Introduction

Pattern classification is to classify some object into one of the given categories
called classes. For a specific pattern classification problem, a classifier, which
is computer software, is developed so that objects are classified correctly with
reasonably good accuracy. Inputs to the classifier are called features, because
they are determined so that they represent each class well or so that data
belonging to different classes are well separated in the input space.

In general there are two approaches to develop classifiers: a parametric
approach [90], in which a priori knowledge of data distributions is assumed,
and a nonparametric approach, in which no a priori knowledge is assumed.

Neural networks [1, 35, 108], fuzzy systems [3, 33, 183], and support vector
machines [69] are typical nonparametric classifiers. Through training using
input-output pairs, classifiers acquire decision functions that classify an input
datum into one of the given classes.

In this chapter we first classify decision functions into direct and indirect
decision functions. For a two-class problem, the class boundary given by a
direct decision function corresponds to the curve where the function vanishes,
while the class boundary given by two indirect decision functions corresponds
to the curve where the two functions give the same values. Then we discuss how
to define and determine the direct decision functions for multiclass problems.

1.1 Decision Functions

1.1.1 Decision Functions for Two-Class Problems

Consider classifying an m-dimensional vector x = (x1, . . . , xm)T into one of
two classes. Suppose that we are given functions g1(x) and g2(x) for Classes
1 and 2, respectively, and we classify x into Class 1 if

g1(x) > 0, g2(x) < 0, (1.1)

and into Class 2 if

4 1 Introduction

g1(x) < 0, g2(x) > 0. (1.2)

We call these functions decision functions. By the preceding decision functions,
if for x

g1(x) g2(x) > 0 (1.3)

is satisfied, x is not classifiable (see the hatched regions in Fig. 1.1; the arrows
show the positive sides of the functions).

Class 1

x1

x2

0

Class 2

g1(x) = 0

g2(x) = 0

Fig. 1.1. Decision functions in a two-dimensional space

To resolve unclassifiable regions, we may change (1.1) and (1.2) as follows.
We classify x into Class 1 if

g1(x) > g2(x) (1.4)

and into Class 2 if
g1(x) < g2(x). (1.5)

In this case, the class boundary is given by (see the dotted curve in Fig.
1.2)

g1(x) = g2(x). (1.6)

This means that the class boundary is indirectly obtained by solving (1.6) for
x. We call this type of decision function an indirect decision function.

If we define the decision functions by

g1(x) = −g2(x), (1.7)

1.1 Decision Functions 5

Class 1

x1

x2

0

Class 2

g1(x) = 0

g2(x) = 0

Class boundary

Fig. 1.2. Class boundary for Fig. 1.1

we classify x into Class 1 if
g1(x) > 0 (1.8)

and into Class 2 if
g2(x) > 0. (1.9)

Thus the class boundary is given by

g1(x) = −g2(x) = 0. (1.10)

Namely, the class boundary corresponds to the curve where the decision func-
tion vanishes. We call this type of decision function a direct decision function.

If the decision function is linear, namely, g1(x) is given by

g1(x) = wT x + b, (1.11)

where w is an m-dimensional vector and b is a bias term, and if one class is
on the positive side of the hyperplane, i.e., g1(x) > 0, and the other class is
on the negative side, the given problem is said to be linearly separable.

1.1.2 Decision Functions for Multiclass Problems

Indirect Decision Functions

For an n(> 2)-class problem, suppose we have indirect decision functions gi(x)
for classes i. To avoid unclassifiable regions, we classify x into class j given by

6 1 Introduction

j = arg max
i=1,...,n

gi(x), (1.12)

where arg returns the subscript with the maximum value of gi(x). If more
than one decision function take the same maximum value for x, namely, x is
on the class boundary, it is not classifiable.

In the following we discuss several methods to obtain the direct decision
functions for multiclass problems.

One-against-All Formulation

The first approach is to determine the decision functions by the one-against-all
formulation [256]. We determine the ith decision function gi(x) (i = 1, . . . , n),
so that when x belongs to class i,

gi(x) > 0, (1.13)

and when x belongs to one of the remaining classes,

gi(x) < 0. (1.14)

When x is given, we classify x into class i if gi(x) > 0 and gj(x) < 0 (j �=
i, j = 1, . . . , n). But by these decision functions, unclassifiable regions exist
when more than one decision function are positive or no decision functions
are positive, as seen from Fig. 1.3. To resolve these unclassifiable regions we
introduce membership functions in Chapter 3.

Class 1

x1

x2

0

Class 2g1(x) = 0

g2(x) = 0

g3(x) = 0

Class 3

Fig. 1.3. Class boundaries by one-against-all formulation

1.1 Decision Functions 7

Decision-Tree Formulation

The second approach is based on a decision tree. It is considered to be a
variant of one-against-all formulation. We determine the ith decision function
gi(x) (i = 1, . . . , n − 1), so that when x belongs to class i,

gi(x) > 0, (1.15)

and when x belongs to one of the classes {i + 1, . . . , n},

gi(x) < 0. (1.16)

In classifying x, starting from g1(x), we find the first positive gi(x) and
classify x into class i. If there is no such i among gi(x) (i = 1, . . . , n − 1), we
classify x into class n.

Figure 1.4 shows an example of decision functions for four classes. The
decision functions change if we determine decision functions in descending
order or in an arbitrary order of class labels. Therefore, in this architecture,
we need to determine the decision functions so that classification performance
in the upper level of the tree is more accurate than in the lower one. Otherwise,
the classification performance may not be good.

Class 1

x1

x2

0

Class 2

g1(x) = 0

g2(x) = 0

g3(x) = 0
Class 4

Class 3

Fig. 1.4. Decision-tree-based decision functions

Pairwise Formulation

The third approach is to determine the decision functions by pairwise formu-
lation [140]. For classes i and j we determine the decision function gij(x) (i �=
j, i, j = 1, . . . , n), so that

8 1 Introduction

gij(x) > 0 (1.17)

when x belongs to class i and

gij(x) < 0 (1.18)

when x belongs to class j.
In this formulation, gij(x) = −gji(x), and we need to determine n(n−1)/2

decision functions. Classification is done by voting, namely, we calculate

gi(x) =
n∑

j �=i,j=1

sign(gij(x)), (1.19)

where

sign(x) =
{

1 x ≥ 0,
−1 x < 0, (1.20)

and we classify x into the class with the maximum gi(x).1 By this formulation
also, unclassifiable regions exist if gi(x) take the maximum value for more
than one class (see the hatched region in Fig. 1.5). These can be resolved by
decision-tree formulation or by introducing membership functions as discussed
in Chapter 3.

Class 1

x1

x2

0

Class 2g12(x) = 0

g23(x) = 0

g13(x) = 0

Class 3

Fig. 1.5. Class boundaries by pairwise formulation

1We may define the sign function by

sign(x) =

{ 1 x > 0,
0 x = 0,
−1 x < 0.

1.1 Decision Functions 9

Error-Correcting Output Codes

The fourth approach is to use error-correcting codes for encoding outputs
[73]. One-against-all formulation is a special case of error-correcting code with
no error-correcting capability, and so is pairwise formulation, as discussed in
Chapter 3, if “don’t” care bits are introduced.

All-at-Once Formulation

The fifth approach is to determine decision functions at all once. Namely, we
determine the decision functions gi(x) by

gi(x) > gj(x) for j �= i, j = 1, . . . , n. (1.21)

In this formulation we need to determine n decision functions at all once
[19, 20, 29, 40, 100, 269, 270], [257, pp. 437–40], [77, pp. 174–6]. This results
in solving a problem with a larger number of variables than the previous
methods.

An example of class boundaries is shown in Fig. 1.6. Unlike one-against-all
and pairwise formulations, there is no unclassifiable region.

x1

x2

0

Class 2g1(x) > g2(x)

Class 3

g2(x) > g3(x)g1(x) > g3(x)

Class 1

Fig. 1.6. Class boundaries by all-at-once formulation

10 1 Introduction

1.2 Determination of Decision Functions

Determination of decision functions using input-output pairs is called train-
ing. In training a multilayer neural network for a two-class problem, we can
determine a direct decision function if we set one output neuron instead of
two. But because for an n-class problem we set n output neurons with the
ith neuron corresponding to the class i decision function, the obtained func-
tions are indirect. Similarly, decision functions for fuzzy classifiers are indirect
because membership functions are defined for each class.

Conventional training methods determine the indirect decision functions
so that each training input is correctly classified into the class designated by
the associated training output. Figure 1.7 shows an example of the decision
functions obtained when the training data of two classes do not overlap. As-
suming that the circles and rectangles are training data for Classes 1 and 2,
respectively, even if the decision function g2(x) moves to the right as shown in
the dotted curve, the training data are still correctly classified. Thus there are
infinite possibilities of the positions of the decision functions that correctly
classify the training data. Although the generalization ability is directly af-
fected by the positions, conventional training methods do not consider this.

Class 1

x1

x2

0

Class 2

g1(x) = 0

g2(x) = 0

Fig. 1.7. Class boundary when classes do not overlap

In a support vector machine, the direct decision function that maximizes
the generalization ability is determined for a two-class problem. Assuming
that the training data of different classes do not overlap, the decision function
is determined so that the distance from the training data is maximized. We
call this the optimal decision function. Because it is difficult to determine a

1.3 Data Sets Used in the Book 11

nonlinear decision function, the original input space is mapped into a high-
dimensional space called feature space. And in the feature space, the optimal
decision function, namely, the optimal hyperplane is determined.

Support vector machines outperform conventional classifiers, especially
when the number of training data is small and the number of input variables is
large. This is because the conventional classifiers do not have the mechanism
to maximize the margins of class boundaries. Therefore, if we introduce some
mechanism to maximize margins, the generalization ability is improved.

1.3 Data Sets Used in the Book

Table 1.1 shows the data sets used in this book to evaluate the performance of
classifiers and function approximators. The first eight data sets are for pattern
classification, the last three for function approximation.

The data sets for pattern classification are the iris data [32, 84], the nu-
meral data for license plate recognition [244], the thyroid data [264],2 the
blood cell data [106], hiragana data [3, 141], and the MNIST data [143].3

Table 1.1. Benchmark data specification

Data Inputs Classes Training data Test data

Iris 4 3 75 75

Numeral 12 10 810 820

Thyroid 21 3 3772 3428

Blood cell 13 12 3097 3100

Hiragana-50 50 39 4610 4610

Hiragana-105 105 38 8375 8356

Hiragana-13 13 38 8375 8356

MNIST 784 10 60,000 10,000

Mackey-Glass 4 1 500 500

Water Purif. (Stationary) 10 1 241 237

Water Purif. (Nonstationary) 10 1 45 40

The Fisher iris data are widely used for evaluating classification perfor-
mance of classifiers. They consist of 150 data with four features and three

2ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
3http://yann.lecun.com/exdb/mnist/

12 1 Introduction

classes; there are 50 data per class. We used the first 25 data of each class as
the training data and the remaining 25 data of each class as the test data.

The numeral data were collected to identify Japanese license plates of run-
ning cars. They include numerals, hiragana, and kanji characters. The original
image taken from a TV camera was preprocessed and each numeral was trans-
formed into 12 features, such as the number of holes and the curvature of a
numeral at some point.

The thyroid data include 15 digital features and more than 92 percent of
the data belong to one class. Thus the recognition rate lower than 92 percent
is useless.

The blood cell classification involves classifying optically screened white
blood cells into 12 classes using 13 features. This is a very difficult problem;
class boundaries for some classes are ambiguous because the classes are defined
according to the growth stages of white blood cells.

Hiragana-50 and hiragana-105 data were gathered from Japanese license
plates. The original grayscale images of hiragana characters were transformed
into (5 × 10)-pixel and (7 × 15)-pixel images, respectively, with the grayscale
range being from 0 to 255. Then by performing grayscale shift, position shift,
and random noise addition to the images, the training and test data were
generated. Then for the hiragana-105 data to reduce the number of input
variables, i.e., 7×15 = 105, the hiragana-13 data were generated by calculating
the 13 central moments for the (7 × 15)-pixel images [50, 141].

The MNIST data are handwritten numerals consisting of (28×28)-pixel
inputs with 256 grayscale levels; they are often used to evaluate support vector
machines.

In addition to these data sets, in Chapter 10, we use two-class data sets4

used in [173, 199].
For function approximation we use the Mackey-Glass time series data [70]

and water purification plant data [22] listed in Table 1.1. In the table, the
number of classes corresponds to the number of outputs and is 1.

The Mackey-Glass differential equation generates time series data with a
chaotic behavior and is given by

dx(t)
dt

=
0.2 x(t − τ)

1 + x10(t − τ)
− 0.1 x(t), (1.22)

where t and τ denote time and time delay, respectively.
By integrating (1.22), we can obtain the time series data x(0), x(1), x(2),

. . . , x(t), Using x prior to time t, we predict x after time t. Setting τ = 17
and using four inputs x(t − 18), x(t − 12), x(t − 6), x(t), we estimate x(t + 6).

The first 500 data from the time series data, x(118), . . . , x(1117), are used
to train function approximators, and the remaining 500 data are used to test
performance. This data set is often used as the benchmark data for function
approximation and the normalized root-mean-square error (NRMSE), i.e., the

4http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

1.3 Data Sets Used in the Book 13

root-mean-square error divided by the standard deviation of the time series
data is used to measure the performance.

In a water purification plant, to eliminate small particles floating in the
water taken from a river, coagulant is added and the water is stirred while
these small particles begin sticking to each other. As more particles stick
together they form flocs, which fall to the bottom of a holding tank. Potable
water is obtained by removing the precipitated flocs and adding chlorine.
Careful implementation of the coagulant injection is very important to obtain
high-quality water. Usually an operator determines the amount of coagulant
needed according to an analysis of the water qualities, observation of floc
formation, and prior experience.

To automate this operation, as inputs for water quality, (1) turbidity,
(2) temperature, (3) alkalinity, (4) pH, and (5) flow rate were used, and to
replace the operator’s observation of floc properties by image processing, (1)
floc diameter, (2) number of flocs, (3) floc volume, (4) floc density, and (5)
illumination intensity were used [22].

The 563 input-output data, which were gathered over a one-year period,
were divided into 478 stationary data and 95 nonstationary data according to
whether turbidity values were smaller or larger than a specified value. Then
each type of data was further divided into two groups to form a training data
set and a test data set; division was done in such a way that both sets had
similar distributions in the output space.

2

Two-Class Support Vector Machines

In training a classifier, usually we try to maximize classification performance
for the training data. But if the classifier is too fit for the training data,
the classification ability for unknown data, i.e., the generalization ability is
degraded. This phenomenon is called overfitting. Namely, there is a trade-off
between the generalization ability and fitting to the training data. Various
methods have been proposed to prevent overfitting [35, pp. 11–5], [1, pp. 86–
91], [80].1

For a two-class problem, a support vector machine is trained so that the
direct decision function maximizes the generalization ability [256, pp. 127–
51], [60, pp. 92–129]. Namely, the m-dimensional input space x is mapped
into the l-dimensional (l ≥ m) feature space z. Then in z, the quadratic pro-
gramming problem is solved to separate two classes by the optimal separating
hyperplane.

In this chapter we discuss support vector machines for two-class problems.
First, we discuss hard-margin support vector machines, in which training data
are linearly separable in the input space. Then we extend hard-margin support
vector machines to the case where training data are not linearly separable
and map the input space into the high-dimensional feature space to enhance
linear separability in the feature space. The characteristics of support vector
machines are then studied theoretically and by computer simulations.

2.1 Hard-Margin Support Vector Machines

Let M m-dimensional training inputs xi (i = 1, . . . , M) belong to Class 1 or
2 and the associated labels be yi = 1 for Class 1 and −1 for Class 2. If these
data are linearly separable, we can determine the decision function:

D(x) = wT x + b, (2.1)
1One of the main ideas is, like support vector machines, to add a regularization

term, which controls the generalization ability, to the objective function.

16 2 Two-Class Support Vector Machines

where w is an m-dimensional vector, b is a bias term, and for i = 1, . . . , M

wT xi + b

{
> 0 for yi = 1,
< 0 for yi = −1. (2.2)

Because the training data are linearly separable, no training data satisfy
wT x + b = 0. Thus, to control separability, instead of (2.2), we consider the
following inequalities:

wT xi + b

{≥ 1 for yi = 1,
≤ −1 for yi = −1. (2.3)

Here, 1 and −1 on the right-hand sides of the inequalities can be a constant
a (> 0) and −a, respectively. But by dividing both sides of the inequalities by
a, (2.3) is obtained. Equation (2.3) is equivalent to

yi (wT xi + b) ≥ 1 for i = 1, . . . , M. (2.4)

The hyperplane

D(x) = wT x + b = c for − 1 < c < 1 (2.5)

forms a separating hyperplane that separates xi (i = 1, . . . , M). When c = 0,
the separating hyperplane is in the middle of the two hyperplanes with c = 1
and −1. The distance between the separating hyperplane and the training
datum nearest to the hyperplane is called the margin. Assuming that the
hyperplanes D(x) = 1 and −1 include at least one training datum, the hy-
perplane D(x) = 0 has the maximum margin for −1 < c < 1. The region
{x | − 1 ≤ D(x) ≤ 1} is the generalization region for the decision function.

Figure 2.1 shows two decision functions that satisfy (2.4). Thus there are
an infinite number of decision functions that satisfy (2.4), which are separating
hyperplanes. The generalization ability depends on the location of the sepa-
rating hyperplane, and the hyperplane with the maximum margin is called
the optimal separating hyperplane (see Fig. 2.1). Assume that no outliers are
included in the training data and that unknown test data will obey the same
probability law as that of the training data. Then it is intuitively clear that
the generalization ability is maximized if the optimal separating hyperplane
is selected as the separating hyperplane.

Now consider determining the optimal separating hyperplane. The Eu-
clidean distance from a training datum x to the separating hyperplane is
given by |D(x)|/‖w‖. This can be shown as follows. Because the vector w
is orthogonal to the separating hyperplane, the line that goes through x and
that is orthogonal to the hyperplane is given by aw/‖w‖+x, where |a| is the
Euclidean distance from x to the hyperplane. It crosses the hyperplane at the
point where

D(aw/‖w‖ + x) = 0 (2.6)

is satisfied. Solving (2.6) for a, we obtain a = −D(x)/‖w‖.

2.1 Hard-Margin Support Vector Machines 17

Optimal hyperplane

Maximum
margin

x1

x2

0

Fig. 2.1. Optimal separating hyperplane in a two-dimensional space

Then all the training data must satisfy

ykD(xk)
‖w‖ ≥ δ for k = 1, . . . , M, (2.7)

where δ is the margin.
Now if (w, b) is a solution, (aw, ab) is also a solution, where a is a scalar.

Thus we impose the following constraint:

δ ‖w‖ = 1. (2.8)

From (2.7) and (2.8), to find the optimal separating hyperplane, we need to
find w with the minimum Euclidean norm that satisfies (2.4).

Therefore, the optimal separating hyperplane can be obtained by minimiz-
ing

Q(w) =
1
2

‖w‖2 (2.9)

with respect to w and b subject to the constraints:

yi (wT xi + b) ≥ 1 for i = 1, . . . , M. (2.10)

Here, the square of the Euclidean norm ‖w‖ in (2.9) is to make the optimiza-
tion problem quadratic programming. The assumption of linear separability
means that there exist w and b that satisfy (2.10). We call the solutions
that satisfy (2.10) feasible solutions. Because the optimization problem has

18 2 Two-Class Support Vector Machines

the quadratic objective function with the inequality constraints, even if the
solutions are nonunique, the value of the objective function is unique (see
Section 2.6.4). Thus nonuniqueness is not a problem for support vector ma-
chines. This is one of the advantages of support vector machines over neural
networks, which have numerous local minima.

Because we can obtain the same optimal separating hyperplane even if
we delete all the data that satisfy the strict inequalities in (2.10), the data
that satisfy the equalities are called support vectors.2 In Fig. 2.1, the data
corresponding to the filled circles and the filled rectangle are support vectors.

The variables of the convex optimization problem given by (2.9) and (2.10)
are w and b. Thus the number of variables is the number of input variables
plus 1: m+1. When the number of input variables is small, we can solve (2.9)
and (2.10) by the quadratic programming technique. But, as will be discussed
later, because we map the input space into a high-dimensional feature space,
in some cases, with infinite dimensions, we convert (2.9) and (2.10) into the
equivalent dual problem whose number of variables is the number of training
data.

To do this, we first convert the constrained problem given by (2.9) and
(2.10) into the unconstrained problem

Q(w, b,α) =
1
2

wT w −
M∑

i = 1

αi {yi (wT xi + b) − 1}, (2.11)

where α = (α1, . . . , αM)T and αi are the nonnegative Lagrange multipliers.
The optimal solution of (2.11) is given by the saddle point, where (2.11) is
minimized with respect to w and b and maximized with respect to αi (≥
0), and it satisfies the following Karush-Kuhn-Tucker (KKT) conditions (see
Theorem C.1):

∂Q(w, b,α)
∂w

= 0, (2.12)

∂Q(w, b,α)
∂b

= 0, (2.13)

αi {yi (wT xi + b) − 1} = 0 for i = 1, . . . , M, (2.14)
αi ≥ 0 for i = 1, . . . , M. (2.15)

Especially, the relations between the inequality constraints and their associ-
ated Lagrange multipliers given by (2.14) are called KKT complementarity
conditions. In the following, if there is no confusion, the KKT complementar-
ity conditions are called the KKT conditions.

2This definition is imprecise. As shown in Definition 2.11, there are data that
satisfy yi (wT x + b) = 1 but that can be deleted without changing the optimal
separating hyperplane. Support vectors are defined using the solution of the dual
problem, as discussed later.

2.1 Hard-Margin Support Vector Machines 19

From (2.14), αi = 0, or αi �= 0 and yi (wT xi + b) = 1 must be satisfied.
The training data xi with αi �= 0 are called support vectors.3

Using (2.11), we reduce (2.12) and (2.13), respectively, to

w =
M∑

i = 1

αi yi xi (2.16)

and

M∑
i = 1

αi yi = 0. (2.17)

Substituting (2.16) and (2.17) into (2.11), we obtain the following dual
problem. Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i, j = 1

αi αj yi yj xT
i xj (2.18)

with respect to αi subject to the constraints

M∑
i = 1

yi αi = 0, αi ≥ 0 for i = 1, . . . , M. (2.19)

The formulated support vector machine is called the hard-margin support
vector machine. Because

1
2

M∑
i, j = 1

αi αj yi yj xT
i xj =

1
2

(
M∑

i = 1

αi yi xi

)T (M∑
i = 1

αi yi xi

)
≥ 0, (2.20)

maximizing (2.18) under the constraints (2.19) is a concave quadratic pro-
gramming problem. If a solution exists, namely, if the classification problem
is linearly separable, the global optimal solution αi (i = 1, . . . , M) exists. For
quadratic programming, the values of the primal and dual objective functions
coincide at the optimal solutions if they exist. This is called the zero duality
gap.

Data that are associated with positive αi are support vectors for Classes
1 and 2. Then from (2.16) the decision function is given by

D(x) =
∑
i∈S

αi yi xT
i x + b, (2.21)

where S is the set of support vector indices, and from the KKT conditions
given by (2.14), b is given by

3In the definition of support vectors, we exclude the data in which both αi = 0
and yi (wT xi + b) = 1 hold.

20 2 Two-Class Support Vector Machines

b = yi − wT xi, (2.22)

where xi is a support vector. From the standpoint of precision of calculations,
it is better to take the average among the support vectors as follows:

b =
1

|S|
∑
i∈S

(yi − wT xi). (2.23)

Then unknown datum x is classified into:{
Class 1 if D(x) > 0,
Class 2 if D(x) < 0.

(2.24)

If D(x) = 0, x is on the boundary and thus is unclassifiable. When training
data are separable, the region {x | 1 > D(x) > −1} is a generalization region.

Example 2.1. Consider a linearly separable case shown in Fig. 2.2. The in-
equality constraints given by (2.10) are

−w + b ≥ 1, (2.25)
−b ≥ 1, (2.26)

−(w + b) ≥ 1. (2.27)

x0

Class 1 Class 2

1−1
x1 x3x2

Fig. 2.2. Linearly separable one-dimensional case

The region of (w, b) that satisfies (2.25) to (2.27) are given by the shaded
region shown in Fig. 2.3. Thus the solution that minimizes ‖w‖2 is given by

b = −1, w = −2. (2.28)

Namely, the decision function is given by

D(x) = −2 x − 1. (2.29)

The class boundary is given by x = −1/2. Because the solution is determined
by (2.25) and (2.26), x = 0 and −1 are support vectors.

The dual problem is given as follows. Maximize

Q(α) = α1 + α2 + α3 − 1
2

(α1 + α3)2 (2.30)

2.1 Hard-Margin Support Vector Machines 21

w

b

0

1

−1

−2 −1

Fig. 2.3. Region that satisfies constraints

subject to

α1 − α2 − α3 = 0, (2.31)
αi ≥ 0 for i = 1, 2, 3. (2.32)

From (2.31), α2 = α1 − α3. Substituting it into (2.30), we obtain

Q(α) = 2α1 − 1
2

(α1 + α3)2, (2.33)

αi ≥ 0 for i = 1, 2, 3. (2.34)

Because α1 ≥ 0 and α3 ≥ 0, (2.33) is maximized when α3 = 0. Thus,
(2.33) reduces to

Q(α) = 2α1 − 1
2

α2
1

= −1
2

(α1 − 2)2 + 2, (2.35)

α1 ≥ 0. (2.36)

Because (2.35) is maximized for α1 = 2, the optimal solution for (2.30) is

α1 = 2, α2 = 2, α3 = 0. (2.37)

Therefore, x = −1 and 0 are support vectors and w = −2 and b = −1,
which are the same as the solution obtained by solving the primary problem.
In addition, because Q(w) = Q(α) = 2, the duality gap is zero.

Consider changing the label of x3 into that of the opposite class, i.e.,
y3 = 1. Then the problem becomes inseparable and (2.27) becomes w + b ≥ 1.
Thus, from Fig 2.3 there is no feasible solution.

22 2 Two-Class Support Vector Machines

2.2 L1 Soft-Margin Support Vector Machines

In hard-margin support vector machines, we assumed that the training data
are linearly separable. When the data are linearly inseparable, there is no
feasible solution, and the hard-margin support vector machine is unsolvable.
Here we extend the support vector machine so that it is applicable to an
inseparable case.

To allow inseparability, we introduce the nonnegative slack variables ξi (≥
0) into (2.4):

yi (wT xi + b) ≥ 1 − ξi for i = 1, . . . , M. (2.38)

Optimal hyperplane

Maximum
margin

x1

x2

0

ξi

ξj

Fig. 2.4. Inseparable case in a two-dimensional space

By the slack variables ξi, feasible solutions always exist. For the training
data xi, if 0 < ξi < 1 (ξi in Fig. 2.4), the data do not have the maximum
margin but are still correctly classified. But if ξi ≥ 1 (ξj in Fig. 2.4) the data
are misclassified by the optimal hyperplane. To obtain the optimal hyperplane
in which the number of training data that do not have the maximum margin
is minimum, we need to minimize

Q(w) =
M∑

i = 1

θ(ξi),

where

θ(ξi) =
{

1 for ξi > 0,
0 for ξi = 0.

2.2 L1 Soft-Margin Support Vector Machines 23

But this is a combinatorial optimization problem and difficult to solve. In-
stead, we consider minimizing

Q(w, b, ξ) =
1
2

‖w‖2 + C

M∑
i = 1

ξp
i (2.39)

subject to the constraints

yi (wT xi + b) ≥ 1 − ξi for i = 1, . . . , M, (2.40)

where ξ = (ξ1, . . . , ξM)T and C is the margin parameter that determines the
trade-off between the maximization of the margin and minimization of the
classification error. We select the value of p as either 1 or 2. We call the
obtained hyperplane the soft-margin hyperplane. When p = 1, we call the
support vector machine the L1 soft-margin support vector machine or the
L1 support vector machine for short (L1 SVM) and when p = 2, the L2 soft-
margin support vector machine or L2 support vector machine (L2 SVM). In
this section, we discuss L1 soft-margin support vector machines.

Similar to the linearly separable case, introducing the nonnegative La-
grange multipliers αi and βi, we obtain

Q(w, b, ξ,α,β) =
1
2

‖w‖2 + C

M∑
i = 1

ξi

−
M∑

i = 1

αi

(
yi (wT xi + b) − 1 + ξi

)−
M∑

i = 1

βi ξi, (2.41)

where α = (α1, . . . , αM)T and β = (β1, . . . , βM)T .
For the optimal solution, the following KKT conditions are satisfied (see

Theorem C.1):
∂Q(w, b, ξ,α,β)

∂w
= 0, (2.42)

∂Q(w, b, ξ,α,β)
∂b

= 0, (2.43)

∂Q(w, b, ξ,α,β)
∂ξ

= 0. (2.44)

αi (yi (wT xi + b) − 1 + ξi) = 0 for i = 1, . . . , M, (2.45)
βi ξi = 0 for i = 1, . . . , M, (2.46)

αi ≥ 0, βi ≥ 0, ξi ≥ 0 for i = 1, . . . , M. (2.47)

Using (2.41), we reduce (2.42) to (2.44), respectively, to

24 2 Two-Class Support Vector Machines

w =
M∑

i = 1

αi yi xi, (2.48)

M∑
i = 1

αi yi = 0, (2.49)

αi + βi = C for i = 1, . . . , M. (2.50)

Thus substituting (2.48) to (2.50) into (2.41), we obtain the following dual
problem. Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj xT
i xj (2.51)

subject to the constraints

M∑
i = 1

yi αi = 0, C ≥ αi ≥ 0 for i = 1, . . . , M. (2.52)

The only difference between L1 soft-margin support vector machines and hard-
margin support vector machines is that αi cannot exceed C.

Especially, (2.45) and (2.46) are called KKT (complementarity) conditions.
From these and (2.50), there are three cases for αi:

1. αi = 0. Then ξi = 0. Thus xi is correctly classified.
2. 0 < αi < C. Then yi (wT xi + b) − 1 + ξi = 0 and ξi = 0. Therefore,

yi (wT xi + b) = 1 and xi is a support vector. Especially, we call the
support vector with C > αi > 0 an unbounded support vector.

3. αi = C. Then yi (wT xi + b) − 1 + ξi = 0 and ξi ≥ 0. Thus xi is a support
vector. We call the support vector with αi = C a bounded support vector.
If 0 ≤ ξi < 1, xi is correctly classified, and if ξi ≥ 1, xi is misclassified.

The decision function is the same as that of the hard-margin support vector
machine and is given by

D(x) =
∑
i∈S

αi yi xT
i x + b, (2.53)

where S is the set of support vector indices. Because αi are nonzero for the
support vectors, the summation in (2.53) is added only for the support vectors.
For the unbounded αi,

b = yi − wT xi (2.54)

is satisfied. To ensure the precision of calculations, we take the average of b
that is calculated for unbounded support vectors,

b =
1

|U |
∑
i∈U

(yi − wT xi), (2.55)

2.3 Mapping to a High-Dimensional Space 25

where U is the set of unbounded support vector indices.
Then unknown datum x is classified into{

Class 1 if D(x) > 0,
Class 2 if D(x) < 0.

(2.56)

If D(x) = 0, x is on the boundary and thus is unclassifiable. When there are no
bounded support vectors, the region {x | 1 > D(x) > −1} is a generalization
region, which is the same as the hard-margin support vector machine.

2.3 Mapping to a High-Dimensional Space

2.3.1 Kernel Tricks

In a support vector machine the optimal hyperplane is determined to maxi-
mize the generalization ability. But if the training data are not linearly separa-
ble, the obtained classifier may not have high generalization ability although
the hyperplanes are determined optimally. Thus to enhance linear separabil-
ity, the original input space is mapped into a high-dimensional dot-product
space called the feature space.

Now using the nonlinear vector function g(x) = (g1(x), . . . , gl(x))T that
maps the m-dimensional input vector x into the l-dimensional feature space,
the linear decision function in the feature space is given by

D(x) = wT g(x) + b, (2.57)

where w is an l-dimensional vector and b is a bias term.
According to the Hilbert-Schmidt theory (see Appendix D), if a symmetric

function H(x,x′) satisfies

M∑
i,j=1

hi hjH(xi,xj) ≥ 0 (2.58)

for all M , xi, and hi, where M takes on a natural number and hi take on
real numbers, there exists a mapping function, g(x), that maps x into the
dot-product feature space and g(x) satisfies

H(x,x′) = gT (x)g(x′). (2.59)

If (2.59) is satisfied,

M∑
i,j=1

hi hjH(xi,xj) =

(
M∑
i=1

hi gT (xi)

)(
M∑
i=1

hi g(xi)

)
≥ 0. (2.60)

The condition (2.58) or (2.60) is called Mercer’s condition, and the function
that satisfies (2.58) or (2.60) is called the positive semidefinite kernel or the

26 2 Two-Class Support Vector Machines

Mercer kernel. In the following, if there is no confusion, we simply call it the
kernel.

The advantage of using kernels is that we need not treat the high-
dimensional feature space explicitly. This technique is called kernel trick.
Namely, we use H(x,x′) in training and classification instead of g(x) as shown
later.

Using the kernel, the dual problem in the feature space is given as follows.
Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (2.61)

subject to the constraints
M∑

i = 1

yi αi = 0, 0 ≤ αi ≤ C for i = 1, . . . , M. (2.62)

Because H(x,x′) is a positive semidefinite kernel, the optimization problem is
a concave quadratic programming problem. And because α = 0 is a feasible
solution, the problem has the global optimum solution.

The KKT complementarity conditions are given by

αi

⎛
⎝yi

⎛
⎝ M∑

j=1

yj αj H(xi,xj) + b

⎞
⎠− 1 + ξi

⎞
⎠ = 0

for i = 1, . . . , M, (2.63)
(C − αi) ξi = 0 for i = 1, . . . , M, (2.64)
αi ≥ 0, ξi ≥ 0 for i = 1, . . . , M. (2.65)

The decision function is given by

D(x) =
∑
i∈S

αi yi H(xi,x) + b, (2.66)

where b is given by
b = yj −

∑
i∈S

αiyiH(xi,xj). (2.67)

Here, xj is an unbounded support vector. To ensure stability of calculations,
we take the average:

b =
1
U

∑
j∈U

(
yj −

∑
i∈S

αiyiH(xi,xj)

)
, (2.68)

where U is the set of unbounded support vector indices.
Then unknown data are classified using the decision function as follows:

x ∈
{

Class 1 if D(x) > 0,
Class 2 if D(x) < 0. (2.69)

If D(x) = 0, x is unclassifiable.

2.3 Mapping to a High-Dimensional Space 27

2.3.2 Kernels

In the following we discuss some of the kernels that are used in support vector
machines. For the properties of kernels, see Appendix D.1.

Linear Kernels

If a classification problem is linearly separable in the input space, we need not
map the input space into a high-dimensional space. In such a situation we use
linear kernels:

H(x,x′) = xT x′. (2.70)

Polynomial Kernels

The polynomial kernel with degree d, where d is a natural number, is given
by

H(x,x′) = (xT x′ + 1)d. (2.71)

Here, 1 is added so that cross terms with degrees equal to or less than d are
all included.

When d = 1, the kernel is the linear kernel plus 1. Thus, by adjusting b
in the decision function, it is equivalent to the linear kernel. For d = 2 and
m = 2, the polynomial kernel given by (2.71) becomes

H(x,x′) = 1 + 2x1 x′
1 + 2x2 x′

2 + 2x1 x′
1 x2 x′

2 + x2
1 x′2

1 + x2
2 x′2

2

= gT (x)g(x), (2.72)

where g(x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2)

T . Thus for d = 2 and m = 2,
polynomial kernels satisfy Mercer’s condition. In general, we can prove that
polynomial kernels satisfy Mercer’s condition (see Appendix D.1).

Instead of (2.71), the following polynomial kernel can be used:

H(x,x′) = (xT x′)d. (2.73)

However, in this book we use (2.71), which is more general.4

Radial Basis Function Kernels

The radial basis function (RBF) kernel is given by

H(x,x′) = exp(−γ ‖x − x′‖2), (2.74)

where γ is a positive parameter for controlling the radius. Rewriting (2.74),

4In Section 2.3.4, we will show that the mapping functions associated with (2.73)
are many to one for even d, which is unfavorable.

28 2 Two-Class Support Vector Machines

H(x,x′) = exp(−γ ‖x‖2) exp(−γ ‖x′‖2) exp(2γ xT x′). (2.75)

Because

exp(2γ xT x′) = 1 + 2γ xT x′ + 2γ2 (xT x′)2 +
(2γ)3

3!
(xT x′)3 + · · · , (2.76)

exp(2γ xT x′) is an infinite summation of polynomials. Thus it is a kernel. In
addition, exp(−γ ‖x‖2) and exp(−γ ‖x′‖2) are proved to be kernels and the
product of kernels is also a kernel (see Appendix D.1). Thus (2.75) is a kernel.

From (2.66), the resulting decision function is given by

D(x) =
∑
i∈S

αi yi exp(−γ ‖xi − x‖2) + b. (2.77)

Here, the support vectors are the centers of the radial basis functions.
Because RBF kernels use the Euclidean distance, they are not robust to

outliers. To overcome this, Chen [57] proposed the M-estimator-based robust
kernels, which are robust versions of RBF kernels, introducing the idea of
robust statistics.

Three-Layer Neural Network Kernels

The three-layer neural network kernel is given by

H(x,x′) =
1

1 + exp(ν xT x′ − a)
, (2.78)

where ν and a are constants. This kernel does not always satisfy Mercer’s
condition; we need to determine the values of ν and a so that (2.58) is satisfied
[256, p. 141], [60, p. 369].5

From (2.66), the resulting decision function is given by

D(x) =
∑
i∈S

αi yi

1 + exp(ν xT
i x − a)

+ b. (2.79)

The support vectors correspond to the weights between the input and hidden
neurons in the three-layer neural network.

Because Mercer’s condition is not always satisfied for three-layer neural
network kernels, several approaches are made to overcome this problem [178,
239] (see Chapter 9).

5In [215], neural network kernels are shown to be indefinite.

2.3 Mapping to a High-Dimensional Space 29

Other Kernels

There are other kernels, such as spline functions [102, 144, 257] and the Ma-
halanobis kernels [109] that are used for support vector machines. In addition,
many kernels have been developed for specific applications such as image pro-
cessing, text classification, and speech recognition, where inputs have variable
lengths. Because support vector machines are based on fixed-length inputs, we
need to extract fixed-length features or extend kernels that handle variable-
length inputs. In the following, we discuss some of their kernels.

Because correlation among image pixels is localized, global kernels such as
polynomial kernels are inadequate for image classification, and local kernels
are studied [39, 214]. Barla et al. [25] discussed two image kernels: histogram
intersection kernels, which measure the similarity of two color images, and
Hausdorff kernels, which measure the similarity of two grayscale images. Hotta
[113] used the summation of RBF kernels for robust occluded face recognition.

In text classification, documents are classified into one of several topics.
The common approach uses, as features, a histogram of words called a bag of
words [123]. Lodhi et al. [155] used string kernels that give the similarity of a
common substring in two documents. Let the substring length be 2 and the
words be cat and bat. Then we obtain five substrings: c-a, c-t, a-t, b-a, and
b-t, which constitute variables in the feature space. The mapping function is
defined so that the substring that is nearer in a document (in this case a word)
has a higher score, as shown in Table 2.1, where 0 < λ < 1. For example, c-a
in cat, which is a contiguous substring, has a higher score than c-t in cat. The
resulting kernel is calculated as follows:

H(cat, bat) = λ4

H(cat, cat) = H(bat, bat) = 2λ4 + λ6.

The whole document is mapped into one feature space, ignoring punctu-
ation and retaining spaces. For a long substring length, evaluation of kernels
is sped up by dynamic programming.

Table 2.1. Mapping function for cat and bat

c-a c-t a-t b-a b-t

g(cat) λ2 λ3 λ2 0 0

g(bat) 0 0 λ2 λ2 λ3

Leslie et al. [145] developed mismatch kernels, which belong to a class of
string kernels, for protein classification. The mapping function of the (k, m)-
mismatch kernel maps the space of all finite strings with an alphabet of size l

30 2 Two-Class Support Vector Machines

to an lk-dimensional space, i.e., all the combinations of k-length strings. For
the input string of length k, the value of a variable in the feature space is 1 if
the input string differs from the variable string at at most k mismatches and 0
otherwise. For an arbitrary input, the value of a variable is a mismatch count
of all k-substrings included in the input. Then the kernel value is calculated
by the dot-product of the variables in the feature space.

In speech recognition, sequences of data with different lengths need to
be matched [64, 223, 227]. Shimodaira et al. [223] proposed dynamic time-
alignment kernels. Let two sequences of vectors be X = (x1, . . . ,xm) and
Y = (y1, . . . ,yn), where m and n are, in general, different. The dynamic
time-alignment kernel is defined by

Hs(X, V) = max
φ,θ

1
Mφθ

L∑
k=1

m(k)gT (xφ(k))g(xθ(k))

= max
φ,θ

1
Mφθ

L∑
k=1

m(k) H(xφ(k),xθ(k)), (2.80)

where L is the normalized length, m(k) are weights, Mφθ is a normalizing
factor, φ(·) and θ(·) are time-alignment functions that align two sequences by
dynamic programming so that the two become similar.

2.3.3 Normalizing Kernels

If the number of input variables is very large, the value of a kernel becomes
so small or large that training of support vector machines becomes difficult.
To overcome this, it is advisable to normalize kernels.

For a polynomial kernel with degree d, the maximum value is (m+1)d for
the input range of [0, 1], where m is the number of input variables. Thus we
use the following normalized polynomial:

H(x,x′) =
(xT x′ + 1)d

(m + 1)d
(2.81)

for large m. In the computer experiments in this book, we used (2.81) for m
larger than or equal to 100.

For an RBF kernel, the maximum value of ‖x − x′‖2 is m for the input
range of [0, 1]. Thus we use the following normalized RBF kernel:

H(x,x′) = exp
(
− γ

m
‖x − x′‖2

)
. (2.82)

The use of (2.82) is favorable for choosing a proper value of γ for problems
with different numbers of input variables.

Example 2.2. In Fig. 2.2 let x3 (= 1) belong to class 1 so that the problem
is inseparable (see Fig. 2.5). Using the polynomial kernel with degree 2, the
dual problem is given as follows. Maximize

2.3 Mapping to a High-Dimensional Space 31

Q(α) = α1 + α2 + α3 − (2 α2
1 +

1
2

α2
2 + 2 α2

3 − α2 (α1 + α3)) (2.83)

subject to

α1 − α2 + α3 = 0, (2.84)
C ≥ αi ≥ 0 for i = 1, 2, 3. (2.85)

x0

Class 1 Class 2

1−1

Class 1

x1 x2 x3

Fig. 2.5. Inseparable one-dimensional case

From (2.84), α2 = α1 + α3. Then substituting it into (2.83), we obtain

Q(α) = 2α1 + 2 α3 − (2 α2
1 − 1

2
(α1 + α3)2 + 2 α2

3), (2.86)

C ≥ αi ≥ 0 for i = 1, 2, 3. (2.87)

From

∂Q(α)
∂α1

= 2 − 3 α1 + α3 = 0, (2.88)

∂Q(α)
∂α3

= 2 + α1 − 3 α3 = 0, (2.89)

α1 = α3 = 1. Thus, for C ≥ 2, the optimal solution is

α1 = 1, α2 = 2, α3 = 1. (2.90)

Therefore, for C ≥ 2, x = −1, 0, and 1 are support vectors. From (2.67),
b = −1. Then the decision function is given by (see Fig. 2.6)

D(x) = (x − 1)2 + (x + 1)2 − 3
= 2x2 − 1. (2.91)

The decision boundaries are given by x = ±√
2/2. Therefore, in the input

space the margin for Class 2 is larger than that for Class 1, although they are
the same in the feature space.

2.3.4 Properties of Mapping Functions Associated with Kernels

If the mapping function associated with a nonlinear kernel is many-to-one
mapping, namely, more than one point in the input space are mapped to a

32 2 Two-Class Support Vector Machines

x0

Class 1 Class 2

1−1

Class 1

−1

1

D (x)

Fig. 2.6. Decision function for the inseparable one-dimensional case

single point in the feature space, a classification problem may become insepa-
rable in the feature space even if the problem is separable in the input space.
In this section, we discuss that this does not happen for polynomial kernels
with constant terms and RBF kernels. But for polynomial kernels without
constant terms, many-to-one mapping may occur. Then we clarify that the
mapped region is not convex. Namely, the preimage of a linear sum of the
mapped input data does not exist.

One-to-One Mapping

The mapping function g(x) associated with the polynomial kernel given by
(2.71) is

g(x) = (1,
√

d x1, . . . ,
√

d xm, . . . , xd
1, . . . , x

d
m)T . (2.92)

Thus, if g(x) = g(x′), x = x′. Therefore, mapping is one to one.
But for H(x,x′) = (xT x′)d with even d, the mapping is many to one. For

example, for d = 2,

g(x) = (x2
1, . . . , x

2
m,

√
2 x1 x2, . . . ,

√
2 xm−1 xm)T . (2.93)

Thus, if g(x) = g(x′),

x2
1 = x′2

1 ,

· · ·
x2

m = x′2
m,

x1 x2 = x′
1 x′

2,

· · ·
xm−1 xm = x′

m−1 x′
m.

2.3 Mapping to a High-Dimensional Space 33

This set of simultaneous equations is satisfied if x = x′ or x = −x′. For
the input range of [0, 1], the mapping is one to one, because we can exclude
x = −x′. But for the range of [−1, 1], the mapping is two to one. A similar
discussion holds for even d. Therefore, we should avoid using the scale [−1, 1]
for even d.

For the RBF kernel, if g(x) = g(x′),

H(x,x′) = gT (x)g(x′) = exp (−γ ‖x − x′‖)
= gT (x)g(x)
= H(x,x)
= 1.

Therefore, x = x′. Thus, the mapping is one to one.

Nonconvexity of Mapped Regions

Let G be the mapped region of the m-dimensional input space Rm by g(·):
G = {g(x) |x ∈ Rm}. (2.94)

Then for polynomial kernels and RBF kernels, G is not convex. Namely, for
z and z′ ∈ G, there exists α (1 > α > 0) such that α z + (1 − α) z′ is not
included in G. This can be shown as follows.

For a polynomial kernel, it is sufficient to show nonconvexity for the axis
xd

i . Because α xd
i + (1 − α) x′d

i (1 > α > 0) is a line segment that connects
xd

i and x′d
i , there is no x that satisfies xd = α xd

i + (1 − α) x′d
i (see Fig. 2.7).

Thus, G is not convex.
For an RBF kernel, because H(x,x) = gT (x)g(x) = 1, g(x) is on the

surface of the hypersphere with the radius of 1 and the center being at the
origin. Thus α z + (1 − α) z′ for 1 > α > 0 is not in G.

Now, for z /∈ G, there is no x that satisfies g(x) = z. Namely, the preimage
of z exists if and only if z ∈ G. And, in general for z1, . . . , zk ∈ G, the preimage
of a linear sum of z1, . . . , zk does not exist.

2.3.5 Implicit Bias Terms

If a kernel includes a constant term instead of (2.57), we can use the decision
function without an explicit bias term:

D(x) = wT g(x). (2.95)

In this case, the dual optimization problem becomes as follows. Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (2.96)

34 2 Two-Class Support Vector Machines

xi

xi
2

0

Fig. 2.7. Nonconvexity of the mapped region. For d = 2, the line segment in the x2
i

axis is outside of the mapped region.

subject to

C ≥ αi ≥ 0 for i = 1, . . . , M. (2.97)

The decision function is given by

D(x) =
∑
i∈S

αi yi H(xi,x). (2.98)

Elimination of the bias term results in elimination of the equality con-
straint in the dual problem. Thus the problem is more easily solved. Polyno-
mial kernels and RBF kernels include bias terms. And even if a kernel does
not include a constant term, adding 1, we obtain the kernel with a constant
term. For H(x,x′) = gT (x)g(x), the kernel

H ′(x,x′) = H(x,x′) + 1
= (gT (x), 1) (gT (x), 1)T (2.99)

has a constant term. For example, for the linear kernel H(x,x′) = xT x,
H ′(x,x′) = xT x′ + 1 has a constant term.

Unfortunately, the solutions of both formulations are, in general, different
even for the linear kernels [101, p. 22] as Example 2.3 shows. According to
the computer experiment by Huang and Kecman [115], the solution of the
support vector machine without bias terms has a lager number of support
vectors. Therefore, to suppress the increase, they developed a model that
includes Mangasarian and Musicant’s model as a special case.

2.3 Mapping to a High-Dimensional Space 35

Example 2.3. Suppose that there are only two data: x1 belonging to Class 1
and x2 belonging to Class 2. Let H ′(x,x′) = H(x,x′) + 1 and assume that
H(xi,xj) ≥ 0 for i, j = 1, 2.6

We study the relation of the solutions with and without bias terms. Assume
that x1 �= x2. Then the problem is linearly separable. So we consider the hard-
margin support vector machine. The dual problem with the explicit bias term
is as follows. Maximize

Q(α) = α1 + α2 − 1
2

(α2
1 H11 + α2

2 H22 − 2 α1 α2 H12) (2.100)

subject to

α1 − α2 = 0, α1 ≥ 0, α2 ≥ 0. (2.101)

Here, for example, H12 = H(x1,x2).
Substituting the first equation in (2.101) into (2.100), we obtain the solu-

tion:

α1 = α2 =
2
H

, (2.102)

b =
1
H

(H22 − H11), (2.103)

where H = H11 + H22 − 2H12 > 0.
Thus the decision function is given by

D(x) =
2
H

(H(x1,x) − H(x2,x)) +
1
H

(H22 − H11). (2.104)

From (2.104), D(x1) = 1 and D(x2) = −1, which satisfy the KKT condi-
tions. For H(x,x′) = xT x′, (2.104) becomes

D(x) =
1

‖x1 − x2‖2 (2 (x1 − x2)T x + xT
2 x2 − xT

1 x1). (2.105)

Thus the decision function is orthogonal to (x1−x2) and the decision boundary
passes through the middle point of x1 and x2.

Now consider the special case where the input variable has one dimension.
For H(x, x′) = (x x′)d, the decision function is

D(x) =
2xd − xd

1 − xd
2

xd
1 − xd

2
. (2.106)

Thus the decision function vanishes when

x =
d

√
xd

1 + xd
2

2
. (2.107)

6This assumption is satisfied when the input variables are nonnegative and
H(x,x′) = (xT x)d.

36 2 Two-Class Support Vector Machines

This means that for d = 1, the decision boundary passes through the middle
point of x1 and x2, but for d larger than 1, it passes through the middle point
of g(x1) = xd

1 and g(x2) = xd
2, which is different from (x1 + x2)/2.

The dual problem with the implicit bias term is as follows. Maximize

Q(α) = α1 + α2 − 1
2

(α2
1 H ′

11 + α2
2 H ′

22 − 2 α1 α2 H ′
12) (2.108)

subject to

α1 ≥ 0, α2 ≥ 0. (2.109)

Partially differentiating (2.108) with respect to α1 and α2 and equating
them to 0, we obtain the solution:

α1 =
H ′

12 + H ′
22

H ′
11H

′
22 − (H ′

12)2
, (2.110)

α2 =
H ′

11 + H ′
12

H ′
11H

′
22 − (H ′

12)2
. (2.111)

According to the assumption, α1 and α2 are nonnegative.
Then the decision function is given by

D(x) =
1

H ′
11H

′
22 − (H ′

12)2

×((H ′
12 + H ′

22) H ′(x1,x) − (H ′
11 + H ′

12) H ′(x2,x))

=
1

(H11 + 1) (H22 + 1) − (H12 + 1)2

×((H12 + H22 + 2)H(x1,x) − (H11 + H12 + 2)H(x2,x)
+H22 − H11). (2.112)

Thus, D(x1) = 1 and D(x2) = −1, which satisfy the KKT conditions. For
H ′(x,x′) = xT x′ + 1, (2.112) becomes

D(x) =
1

(xT
1 x1 + 1) (xT

2 x2 + 1) − (xT
1 x2 + 1)2

×((((x1 + x2)T x2 + 2)xT
1 − (xT

1 (x1 + x2) + 2)xT
2)x

+xT
2 x2 − xT

1 x1). (2.113)

Because D(x1) = 1 and D(x2) = −1 and (2.113) is linear, the decision bound-
ary passes through the middle point of x1 and x2. But because in general
(2.113) is not orthogonal to (x1 − x2), (2.106) and (2.113) are different.

Now consider the special case where the two decision functions are equal.
Let the dimension of the input variable be 1 and H ′(x, x′) = (x x′)d +1. Then
the decision function (2.112) becomes

D(x) =
2xd − xd

2 − xd
1

xd
1 − xd

2
, (2.114)

which is equivalent to (2.106).

2.4 L2 Soft-Margin Support Vector Machines 37

2.4 L2 Soft-Margin Support Vector Machines

Instead of the linear sum of the slack variables ξi in the objective function,
the L2 soft-margin support vector machine (L2 SVM) uses the square sum of
the slack variables. Namely, training is done by minimizing

Q(w, b, ξ) =
1
2
wT w +

C

2

M∑
i=1

ξ2
i (2.115)

with respect to w, b, and ξ subject to the inequality constraints:

yi (wT g(xi) + b) ≥ 1 − ξi for i = 1, . . . , M. (2.116)

Here, w is the l-dimensional vector, b is the bias term, g(x) is the mapping
function that maps the m-dimensional vector x into the l-dimensional feature
space, ξi is the slack variable for xi, and C is the margin parameter.

Introducing the Lagrange multipliers αi (≥ 0), we obtain

Q(w, b,α, ξ) =
1
2
wT w +

C

2

M∑
i=1

ξ2
i

−
M∑
i=1

αi

(
yi (wT g(xi) + b) − 1 + ξi

)
. (2.117)

Here, we do not need to introduce the Lagrange multipliers associated with
ξ. As is shown immediately, Cξi = αi is satisfied for the optimal solution.
Hence ξi is nonnegative, so long as αi is nonnegative.

For the optimal solution the following KKT conditions are satisfied:

∂Q(w, b,α, ξ)
∂w

= w −
M∑
i=1

yi αi g(xi) = 0, (2.118)

∂Q(w, b,α, ξ)
∂ξi

= C ξi − αi = 0, (2.119)

∂Q(w, b,α, ξ)
∂b

=
M∑
i=1

yi αi = 0, (2.120)

αi

(
yi (wT g(xi) + b) − 1 + ξi

)
= 0 for i = 1, . . . , M. (2.121)

Equation (2.121) gives the KKT complementarity conditions; from (2.118),
(2.119), and (2.121), the optimal solution must satisfy either αi = 0 or

yi

⎛
⎝ M∑

j=1

αj yj

(
H(xj ,xi) +

δij

C

)
+ b

⎞
⎠− 1 = 0, (2.122)

38 2 Two-Class Support Vector Machines

where H(x,x′) = gT (x)g(x) and δij is Kronecker’s delta function, in which
δij = 1 for i = j and 0 otherwise. Thus the value of the bias term b is
calculated for αi > 0:

b = yi −
M∑

j=1

αj yj

(
H(xj ,xi) +

δij

C

)
, (2.123)

which is different from that of the L1 support vector machine. But the decision
function is the same:

D(x) =
M∑
i=1

αi yi H(xi,x) + b. (2.124)

Substituting (2.118) to (2.120) into (2.117), we obtain the dual objective
function:

Q(α) =
M∑
i=1

αi − 1
2

M∑
i,j=1

yi yj αi αj

(
H(xi,xj) +

δij

C

)
. (2.125)

Thus the following dual problem is obtained. Maximize (2.125) subject to

M∑
i=1

yi αi = 0, αi ≥ 0 for i = 1, . . . , M. (2.126)

This is similar to a hard-margin support vector machine. The difference is the
addition of δij/C in (2.125). Therefore, for the L1 support vector machine,
if we replace H(xj ,xi) with H(xj ,xi) + δij/C and remove the upper bound
given by C for αi, we obtain the L2 support vector machine. But we must
notice that when we calculate the decision function in (2.124) we must not
add δij/C.

Because 1/C is added to the diagonal elements of the matrix H =
{H(xi,xj)} called the kernel matrix, the resulting matrix becomes positive
definite. Thus the associated optimization problem is more computationally
stable than that of the L1 support vector machine.

L2 soft-margin support vector machines look similar to hard-margin sup-
port vector machines. Actually, letting

w̃ =
(

w√
Cξ

)
, b̃ = b, g̃(xi) =

⎛
⎜⎝ g(xi)

yi√
C

ei

⎞
⎟⎠ , (2.127)

where ei is the M -dimensional vector with the ith element being 1 and the
remaining elements 0, training of the L2 support vector machine given by
(2.115) and (2.116) is converted into the following problem. Minimize

2.5 Advantages and Disadvantages 39

1
2
w̃T w̃ (2.128)

subject to

yi (w̃T g̃(xi) + b̃) ≥ 1 for i = 1, . . . , M. (2.129)

Therefore, the L2 support vector machine is equivalent to the hard-margin
support vector machine with the augmented feature space. Because the L2
support vector machine always has a solution because of the slack variables,
the equivalent hard-margin support vector machine also has a solution. But
this only means that the solution is nonoverlapping in the augmented feature
space. Therefore, there may be cases where the solution is overlapped in the
original feature space, and thus the recognition rate of the training data for
the L2 support vector machine is not 100 percent.

2.5 Advantages and Disadvantages

Based on the support vector machines explained so far, we discuss their advan-
tages over multilayer neural networks, which are representative
nonparametric classifiers. Then we discuss disadvantages of support vector
machines and some ways to solve these problems.

2.5.1 Advantages

The advantages of support vector machines over multilayer neural network
classifiers are as follows.

1. Maximization of generalization ability. In training a multilayer neu-
ral network classifier, the sum-of-squares error between outputs and de-
sired training outputs is minimized. Thus, the class boundaries change
as the initial weights change. So does the generalization ability. Thus,
especially when training data are scarce and linearly separable, the gen-
eralization ability deteriorates considerably. But because a support vector
machine is trained to maximize the margin, the generalization ability does
not deteriorate very much, even under such a condition [3].

2. No local minima. A multilayer neural network classifier is known to
have numerous local minima, and there have been extensive discussions
on how to avoid a local minimum in training. But because a support
vector machine is formulated as a quadratic programming problem, there
is a global optimum solution.

3. Robustness to outliers. Multilayer neural network classifiers are vul-
nerable to outliers because they use the sum-of-squares errors. Thus to
prevent the effect of outliers, outliers need to be eliminated before train-
ing, or some mechanism for suppressing outliers needs to be incorporated

40 2 Two-Class Support Vector Machines

in training. In support vector machines the margin parameter C controls
the misclassification error. If a large value is set to C, misclassification is
suppressed, and if a small value is set, training data that are away from
the gathered data are allowed to be misclassified. Thus by properly setting
a value to C, we can suppress outliers.

2.5.2 Disadvantages

The disadvantages of support vector machines explained so far are as follows.

1. Extension to multiclass problems. Unlike multilayer neural network
classifiers, support vector machines use direct decision functions. Thus
an extension to multiclass problems is not straightforward, and there are
several formulations. One of the purposes of this book is to clarify relations
between these formulations (see Chapter 3).

2. Long training time. Because training of a support vector machine is
done by solving the associated dual problem, the number of variables is
equal to the number of training data. Thus for a large number of training
data, solving the dual problem becomes difficult from both the memory
size and the training time. (See Chapter 5 for training speedup.)

3. Selection of parameters. In training a support vector machine, we need
to select an appropriate kernel and its parameters, and then we need to
set the value to the margin parameter C. To select the optimal parameters
to a given problem is called model selection. This is the same situation
as that of neural network classifiers. Namely, we need to set the number
of hidden units, initial values of weights, and so on. In support vector
machines, model selection is done by estimating the generalization ability
through repeatedly training support vector machines. But because this is
time-consuming, several indices for estimating the generalization ability
have been proposed (see Section 2.8).

2.6 Characteristics of Solutions

Here we analyze characteristics of solutions for the L1 and L2 soft-margin
support vector machines. For the L1 soft-margin support vector machine we
find αi (i = 1, . . . , M) that maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (2.130)

subject to the constraints

M∑
i = 1

yi αi = 0, C ≥ αi ≥ 0 for i = 1, . . . , M. (2.131)

2.6 Characteristics of Solutions 41

For the L2 soft-margin support vector machine we find αi (i = 1, . . . , M)
that maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj

(
H(xi,xj) +

δij

C

)
(2.132)

subject to the constraints

M∑
i = 1

yi αi = 0, αi ≥ 0 for i = 1, . . . , M. (2.133)

2.6.1 Hessian Matrix

Rewriting (2.130) for the L1 support vector machine using the mapping func-
tion g(x), we have

Q(α) =
M∑

i = 1

αi − 1
2

(
M∑
i=1

αi yi g(xi)

)T M∑
i=1

αi yi g(xi). (2.134)

Solving (2.131) for αs (s ∈ {1, . . . , M}),

αs = −ys

M∑
i�=s,
i=1

yi αi. (2.135)

Substituting (2.135) into (2.134), we obtain

Q(α′) =
M∑

i�=s,
i=1

(1 − ys yi) αi

−1
2

⎛
⎝ M∑

i�=s,
i=1

αi yi (g(xi) − g(xs))

⎞
⎠

T
M∑

i�=s,
i=1

αi yi (g(xi) − g(xs)), (2.136)

where α′ is obtained by deleting αs from α. Thus the Hessian matrix of
−Q(α′), HL1,7 which is an (M − 1) × (M − 1) matrix, is given by

HL1 = −∂2Q(α′)
∂α′2

=
(· · · yi (g(xi) − g(xs)) · · ·)T (· · · yj (g(xj) − g(xs)) · · ·) . (2.137)

7Conditionally positive semidefiniteness, which is positive semidefiniteness un-
der an equality constraint discussed in Appendix D.1, is equivalent to positive
semidefiniteness of HL1.

42 2 Two-Class Support Vector Machines

Because HL1 is expressed by the product of the transpose of a matrix and
the matrix, H is positive semidefinite. Let Ng be the maximum number of
independent vectors among {g(xi) − g(xs)| i ∈ {i, . . . , M, i �= s}}. Then the
rank of HL1 is Ng [3, pp. 311–12]. Because Ng does not exceed the dimension
of the feature space l,

Ng ≤ l (2.138)

is satisfied. Therefore, if M > (l + 1), HL1 is positive semidefinite. For the
linear kernel, l = m, where m is the number of input variables, for the poly-
nomial kernel with degree d, l = m+dCd [109, pp. 38–41], and for the RBF
kernel, l = ∞.

The Hessian matrix HL2 in which one variable is eliminated, for the L2
support vector machine, is expressed by

HL2 = HL1 +
{

yi yj + δij

C

}
. (2.139)

The matrix HL1 is positive semidefinite, and the matrix {δij/C} is positive
definite. Because

{yi yj} = (y1 · · · yM)T (y1 · · · yM) , (2.140)

the matrix {yiyj/C} is positive semidefinite. Here, the sum of positive definite
and positive semidefinite matrices is positive definite. Therefore, unlike HL1,
HL2 is positive definite irrespective of the dimension of the feature space.

2.6.2 Dependence of Solutions on C

According to the analysis of Pontil and Verri [193], we discuss the dependence
of the solution of the L1 support vector machine on the margin parameter C.

Let the sets of support vector indices be

U = {i | 0 < αi < C}, (2.141)
B = {i |αi = C}, (2.142)
S = U ∪ B. (2.143)

From the KKT complementarity conditions given by (2.63) to (2.65), for
i ∈ U ,

yi

⎛
⎝∑

j∈S

αj yj H(xj ,xi) + b

⎞
⎠ = 1. (2.144)

Thus, from (2.144) for a fixed s ∈ U , b is given by

b = ys −
∑
j∈S

αj yj H(xj ,xs). (2.145)

Solving the equality constraint (2.131) for αs (s ∈ U), we obtain

2.6 Characteristics of Solutions 43

αs = −
∑
j �=s,
j∈S

yj ys αj . (2.146)

Substituting (2.145) and (2.146) into (2.144), we obtain∑
j �=s,
j∈S

αjHji = 1 − yi ys, (2.147)

where

Hji = yj yi (H(xj ,xi) − H(xs,xi) − H(xj ,xs) + H(xs,xs)) . (2.148)

Separating the unbounded and bounded αi in (2.147), we obtain∑
j �=s,
j∈U

αj Hji + C
∑
j∈B

Hji = 1 − yi ys. (2.149)

In a matrix form, (2.149) becomes

HU ′ αU ′ + C HU ′B1U ′ = 1U ′ − yU ′ , (2.150)

where U ′ = U − {s}, HU ′ = {Hij | i, j ∈ U ′}, αU ′ = (· · · αi · · ·)T (i ∈ U ′),
HU ′B = {Hij | i ∈ U ′, j ∈ B}, yU ′ = (· · · ys yi · · ·)T (i ∈ U ′), and 1U is a |U ′|-
dimensional vector with all elements equal to 1.

From (2.59), Hij is expressed by

Hij = yi yj (g(xi) − g(xs))T (g(xj) − g(xs)). (2.151)

Thus HU ′ is a symmetric positive semidefinite matrix. As will be stated in
Theorem 2.14, HU ′ is not always positive definite. But here we assume that
it is positive definite. Then, from (2.150) and (2.146), we obtain the following
theorem.

Theorem 2.4. If the Hessian matrix HU ′ is positive definite, the unbounded
αi are given by

αU ′ = H−1
U ′ (1U ′ − yU ′) − C H−1

U ′ HU ′B 1B , (2.152)
αs = −yT

U ′ αU ′ − C yT
B 1B , (2.153)

where yB = (· · · ys yi · · ·)T (i ∈ B) and 1B is a |B|-dimensional vector with
all elements equal to 1.

Therefore, if B = φ, namely, 0 < αi < C for all support vectors, αU ′ =
H−1

U ′ (1U ′ − yU ′).

Theorem 2.5. The coefficient vector of the separating hyperplane, w, in the
feature space is given by

w = w1 + C w2, (2.154)

where w1 and w2 are given by (2.158) and (2.159), and

wT
1 w2 = 0. (2.155)

44 2 Two-Class Support Vector Machines

Proof. Because

w =
∑
i∈S

αi yi g(xi)

=
∑
i∈U ′

αi yi g(xi) + αs ys g(xs) + C
∑
i∈B

yi g(xi)

=
∑
i∈U ′

αi yi (g(xi) − g(xs)) + C
∑
i∈B

yi (g(xi) − g(xs)) (from (2.146))

=
∑
i∈U ′

ri yi (g(xi) − g(xs)) + C
∑
i∈U ′

ti yi (g(xi) − g(xs))

+C
∑
i∈B

yi (g(xi) − g(xs)),

where from (2.152)

r = (· · · ri · · ·)T = H−1
U ′ (1U ′ − yU ′), (2.156)

t = (· · · ti · · ·)T = −H−1
U ′ HU ′B 1B , (2.157)

we obtain

w1 =
∑
i∈U ′

ri yi (g(xi) − g(xs)), (2.158)

w2 =
∑
i∈U ′

ti yi (g(xi) − g(xs)) +
∑
i∈B

yi (g(xi) − g(xs)). (2.159)

Then

wT
1 w2 =

∑
i, j∈U ′

ri Hij tj +
∑

i∈U ′, j∈B

ri Hij

= rHU ′ t + rHU ′B 1B

= 0 (from (2.157)).� (2.160)

Now consider changing the margin parameter C. Let [Ck, Ck+1] be the
interval of C, in which the set of support vectors does not change. Here,
we consider that if unbounded support vectors change to bounded support
vectors, the set is changed. We add suffix k to the sets of support vectors
for the interval [Ck, Ck+1], namely, Sk, Uk, and Bk. Then, from (2.152) and
(2.154), for C in [Ck, Ck+1),

αi = ai + C bi for i ∈ Uk, (2.161)
αi = C for i ∈ Bk, (2.162)

where ai and bi are constant. Notice that so long as Uk = Uk′ and Bk = Bk′ ,
ai and bi are the same for the intervals [Ck, Ck+1) and [Ck′ , Ck′+1).

Because the number of training data is finite, the combinations of sets of
support vectors are finite. But if some sets of support vectors appear infinitely
as we increase C to infinity, the intervals [Ck, Ck+1) may be infinite. The
following theorem shows that this does not happen.

2.6 Characteristics of Solutions 45

Theorem 2.6. For C in [0,∞), there are finite points Ci (i = 1, . . . ,max)
where the set of support vectors changes. And for any C in [Ci, Ci+1) or
[Cmax,∞) the set of support vectors does not change.

Proof. First we show that as C approaches infinity, the weight vector w2 in
(2.154) approaches 0. From (2.154), the quadratic term in the dual objective
function of an L1 support vector machine is expressed by

1
2
wT w =

1
2
(w1 + Cw2)T (w1 + Cw2)

=
1
2
wT

1 w1 + CwT
1 w2 +

1
2
C2wT

2 w2, (2.163)

where w is the weight vector for the optimal solution with C.
Therefore, if w2 is not a zero vector, the value of (2.163) goes to infinity as

C approaches infinity quadratically. Thus, the dual objective function becomes
negative for a large value of C. But because αi = 0 (i = 1, . . . , M) is a feasible
solution with the objective function being 0, w cannot be optimal. Therefore,
there exists C0 where for C larger than C0, w = w1.

Assume that for C larger than C0, two sets of support vectors Sk and Sk+1
alternately appear infinitely. For C > C0, w = w1. Thus, from (2.161) and
(2.162), the dual objective function Q(C) for C in [Ck, Ck+1) is given by

Q(C) =
∑
i∈Uk

ai + C

(∑
i∈Uk

bi + |Bk|
)

− 1
2
wT

1 w1, (2.164)

where w1is a constant vector in [Ck, Ck+1).
For the infinite intervals in [C0,∞), where the sets of support vectors are

the same as Sk, the objective function is given by (2.164). According to the
assumption, the sets of support vectors Sk and Sk+1 alternate, namely,

Sk = Sk+2 = Sk+4 = · · · , (2.165)
Sk+1 = Sk+3 = Sk+5 = · · · . (2.166)

Thus, the objective functions (2.164) for Sk and Sk+1 cross at C = Ck+1,
but because they are monotonic functions, they do not cross at C larger than
Ck+1 (see Fig. 2.8). Because the optimization problem is continuous, namely,
the objective function is continuous for the change of C, discontinuity of the
objective function does not occur. Thus, the assumption that the two sets of
support vectors alternate infinitely does not happen. Therefore the number
of intervals [Ck, Ck+1] is finite and the interval ends with [Cmax,∞], where
“max” is the maximum number of intervals. Thus, the theorem holds. �

For the L2 support vector machine, the following theorem, similar to The-
orem 2.6, holds.

Theorem 2.7. For an L2 support vector machine, there are finite points
C ′

i (i = 1, . . . ,max′) for C ∈ [0,∞) where the set of support vectors changes.

46 2 Two-Class Support Vector Machines

0

C

Q (C)

Ck Ck+1 Ck+4Ck+3Ck+2 Ck+5

Fig. 2.8. Counterexample of infinite intervals of C

And for any C in (C ′
i, C

′
i+1) or (C ′

max′ ,∞), the set of support vectors is the
same.

Proof. Similar to (2.152) and (2.153), the support vectors for an L2 support
vector machine are given by

αS′ = H−1
S′ (1S′ − yS′), (2.167)

αs = −yT
S′ αS′ , (2.168)

where S′ = S − {s}, HS′ = {H ′
ij | i, j ∈ S′}, H ′

ij = Hij + δij/C + yi yj/C, Hij

is given by (2.148), αS′ = (· · ·αi · · ·)T (i ∈ S′), yS′ = (· · · ys yi · · ·)T (i ∈ S′),
and 1S′ is an |S′|-dimensional vector with all elements equal to 1.

Similar to (2.136), the objective function for the L2 support vector ma-
chine, in a matrix form, is given by

Q(C) = (1S′ − yS′)T αT
S′ − 1

2
αT

S′ HS′ αS′ . (2.169)

Substituting (2.167) into (2.169) gives

Q(C) =
1
2

(1S′ − yS′)T H−1
S′ (1S′ − yS′). (2.170)

Because the matrix HS′ is positive definite, H−1
S′ is also positive definite.

By increasing the value of C, the eigenvalues of HS′ decrease, thus those of
H−1

S′ increase. Therefore, Q(C) monotonically increases and saturates as C
approaches infinity.

Suppose that there are infinite intervals of [C ′
k, C ′

k+1] and that the sets of
support vectors S′

k and S′
k+1 alternate infinitely. Then the objective functions

2.6 Characteristics of Solutions 47

(2.170) for S′
k and S′

k+1 cross at C = C ′
k+1 and they do not cross at C

larger than C ′
k+1. But because the objective function is continuous for the

change of C, discontinuity of the objective function does not occur. Thus, the
assumption that the two sets of support vectors alternate infinitely does not
happen. Therefore the number of intervals [C ′

k, C ′
k+1] is finite and the interval

ends with [C ′
max′ ,∞], where “max′” is the maximum number of intervals. �

2.6.3 Equivalence of L1 and L2 Support Vector Machines

In this section, we clarify the condition in which L1 and L2 support vector
machines are equivalent.

Setting C = ∞ in L1 and L2 support vector machines, we obtain the hard-
margin support vector machines as follows. Namely, we find αi (i = 1, . . . , M)
that maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (2.171)

subject to the constraints

M∑
i = 1

yi αi = 0, αi ≥ 0. (2.172)

In other words, as C approaches infinity, the solution of the L1 support vector
machine approaches that of the associated L2 support vector machine. In the
following, we discuss this in more detail.

For the L2 support vector machine, the weight vector is not expressed
by (2.154), but as C approaches infinity, from our previous discussions, the
weight vector converges to w1. Namely, the following theorem holds.

Theorem 2.8. For C in [max(Cmax, C
′
max′),∞], the sets of support vectors

Smax and S′
max′ are the same, and for L1 and L2 support vector machines,

the weight vectors in the feature space converges to vector w1 as C approaches
infinity.

In the following, we discuss the equivalence for the separable and insepa-
rable classification problems.

If the problem is separable, the L1 support vector machine has a finite
optimum solution:

0 ≤ αi < ∞ for i = 1, . . . , M. (2.173)

Let
Cmax = max

i=1,...,M
αi. (2.174)

Then, for the L1 support vector machine, the solution is the same for any
C ∈ [Cmax,∞). Namely, for any C ∈ [Cmax,∞), the support vectors are

48 2 Two-Class Support Vector Machines

unbounded and do not change. Thus the resulting optimal hyperplane does
not change.

Now assume that the given problem is inseparable in the feature space.
Then the solution for (2.171) and (2.172) diverges without bounds. Let Cmax
and C ′

max′ be as defined before. Then for any C ∈ [max(Cmax, C
′
max),∞),

the sets of support vectors for the L1 and L2 support vector machines are
the same. Then although αi goes to infinity as C approaches infinity, from
Theorem 2.8, the weight vector converges to a constant vector.

Example 2.9. Consider an inseparable case with a linear kernel, shown in Fig.
2.9. The dual problem of the L1 support vector machine is to maximize

Q(α) = α1 + α2 + α3 + α4 − 1
2

(−0.2 α2 + 0.4 α3 − α4)2 (2.175)

subject to
α1 + α3 = α2 + α4, C ≥ αi ≥ 0, i = 1, . . . , 4. (2.176)

x0

Class 1 Class 2

10.2
x1 x2 x3 x4

0.4

Fig. 2.9. Inseparable one-dimensional case

From Fig. 2.9, we can assume that x2 and x3 are bounded support vectors.
Namely, α2 = α3 = C. Thus from (2.176), α1 = α4. Therefore, (2.175) reduces
to

Q(α) = 2α1 + 2 C − 1
2

(α1 − 0.2 C)2. (2.177)

Equation (2.177) reaches the maximum value of 2.4 C + 2 when α1 =
0.2 C + 2. Thus, the optimal solution is given by

α1 = α4 = 0.2 C + 2, α2 = α3 = C. (2.178)

Therefore, the solution diverges indefinitely as C approaches infinity. Substi-
tuting (2.178) into the quadratic term of (2.175), we obtain 4. Namely, the
quadratic term is constant for C ≥ 2.5. If this does not hold, an unbounded
solution is not obtained.

Using (2.178), the decision function is given by

D(x) = −2 x + 1. (2.179)

Thus the class boundary is x = 0.5 for C ≥ 2.5.

2.6 Characteristics of Solutions 49

Example 2.10. To evaluate the equivalence of L1 and L2 support vector ma-
chines, we used the iris data listed in Table 1.1. We selected the test data for
Classes 2 and 3, which are not linearly separable for the linear kernels. For
d = 3, the data are linearly separable, and for the L1 support vector machine,
Cmax = 4290.39. Thus, for C ≥ Cmax, the L1 support vector machine gives
the same solution. Table 2.2 lists the support vectors and their αi.

Table 2.2. Support vectors for the iris data with d = 3

i Class αi

7 2 4290.39

21 2 4.28

24 2 2011.89

26 3 763.04

30 3 16.74

32 3 4123.90

37 3 240.29

38 3 1162.58

Table 2.3 shows the number of support vectors and α7 of the L2 support
vector machine for the change of C. Except for C = 103 with the number of
support vectors of 11, the support vectors are the same as those of the L1
support vector machine. For C = 1010, the value of α7 coincides with that for
the L1 support vector machine for the first six digits.

Next, we examined the nonseparable case, i.e., d = 1. Table 2.4 shows the
numbers of support vectors and coefficients of the optimal hyperplanes for
the L1 and L2 support vector machines against C. For the L1 support vector
machine, the numerals in parentheses in the “SVs” column show the bounded
support vectors. From the table, there are five unbounded L1 support vectors,
which corresponds to the maximum number of support vectors, i.e., m+1 = 5.
For the L1 support vector machine, the coefficient w1 reached almost constant
at C = 104.

In theory, for C = ∞ the optimal hyperplane of the L2 support vector
machine converges to that of the L1 support vector machine. But from Ta-
ble 2.4, the difference between the two is still large for C = 1010. Although
the optimal hyperplane of the L2 support vector machine changes as C is in-
creased, the change is small and convergence to that of the L1 support vector
machine is very slow compared to the case where the problem is separable in
the feature space.

50 2 Two-Class Support Vector Machines

Table 2.3. L2 support vectors for the change of C (d = 3)

C SVs α7

103 11 1015.69

104 8 3215.73

105 8 4151.95

106 8 4276.14

107 8 4288.96

108 8 4290.24

109 8 4290.38

1010 8 4290.39

Table 2.4. Coefficients of the optimal hyperplane for L1 and L2 support vector
machines (d = 1)

C L1 SVM L2 SVM

SVs w1 SVs w1

102 11 (6) 1.07 15 1.58

103 8 (3) 4.18 10 2.75

104 7 (2) 11.49 10 3.45

105 7 (2) 11.50 10 3.53

106 7 (2) 11.50 10 3.54

1010 7 (2) 11.49 10 3.54

2.6.4 Nonunique Solutions

Because support vector machines are formulated as quadratic optimization
problems, there is a global maximum (minimum) of the objective function.
This is one of the advantages over multilayer neural networks with numerous
local minima. Although the objective function has the global maximum (min-
imum), there may be cases where solutions are not unique [46]. This is not a
serious problem because the values of the objective function are the same. In
the following, we discuss nonuniqueness of the solution.

If a convex function gives a minimum or maximum at a point, not in
an interval, the function is called strictly convex. In general, if the objective
function of a quadratic programming problem constrained in a convex set is

2.6 Characteristics of Solutions 51

strictly convex or the associated Hessian matrix is positive (negative) definite,
the solution is unique. And if the objective function is convex, there may be
cases where the solution is nonunique (see Fig. 2.10). Convexity of objective
functions for different support vector machine architectures is summarized in
Table 2.5. The symbols in parentheses show the variables.

x1

y

x1

y

(a) (b)

0 0

Fig. 2.10. Convex functions: (a) Strictly convex function. (b) Convex function.
From [4, p. 92, c©IEEE 2002]

Table 2.5. Convexity of objective functions. From [4, p. 92, c©IEEE 2002]

Hard margin L1 soft margin L2 soft margin

Primal Strictly convex Convex Strictly convex

(w, b) (w, b, ξ) (w, b, ξ)

Dual Convex Convex Strictly convex

(α) (α) (α)

We must notice that because b is not included in the dual problem, even if
the solution of the dual problem is unique, the solution of the primal problem
may not be unique.

Assume that the hard-margin support vector machine has a solution, i.e.,
the given problem is separable in the feature space. Then because the objec-
tive function of the primal problem is ‖w‖2/2, which is strictly convex, the
primal problem has a unique solution for w and b. But because the Hessian
matrix of the dual problem is positive semidefinite, the solution for αi may be
nonunique. As discussed previously, the hard-margin support vector machine

52 2 Two-Class Support Vector Machines

for a separable problem is equivalent to the L1 soft-margin support vector
machine with an unbounded solution.

The objective function of the primal problem for the L2 soft-margin sup-
port vector machine is strictly convex. Thus, w and b are uniquely determined
if we solve the primal problem. In addition, because the Hessian matrix of the
dual objective function is positive definite, αi are uniquely determined. And
because of the uniqueness of the primal problem, b is determined uniquely
using the KKT conditions.

Because the L1 soft-margin support vector machine includes the linear sum
of ξi, the primal objective function is convex. Likewise, the Hessian matrix of
the dual objective function is positive semidefinite. Thus the primal and dual
solutions may be nonunique [4].

Before we discuss nonuniqueness of the solution, we clarify some properties
of support vectors.

The KKT complementarity conditions for the L1 support vector machine
are given by (2.63) to (2.65). Thus, in some situation, αi = 0 and yi (wT g(xi)+
b) = 1 are satisfied simultaneously. In this case, xi is not a support vector.

Definition 2.11. For the L1 support vector machine, we call the data that
satisfy yi (wT g(xi)+b) = 1 and that are not support vectors boundary vectors.

Example 2.12. Consider the two-dimensional case shown in Fig. 2.11, in which
x1 belongs to Class 1, x2 and x3 belong to Class 2, and x1−x2 and x3−x2 are
orthogonal. The dual problem with linear kernels is given as follows. Maximize

Q(α) = α1 + α2 + α3

−1
2

(α1 x1 − α2 x2 − α3 x3)T (α1 x1 − α2 x2 − α3 x3) (2.180)

subject to

α1 − α2 − α3 = 0, C ≥ αi ≥ 0, i = 1, 2, 3. (2.181)

Substituting α3 = α1 − α2 and α2 = a α1 (a ≥ 0) into (2.180), we obtain

Q(α) = 2α1 − 1
2

α2
1 ×

(x1 − x3 − a (x2 − x3))T (x1 − x3 − a (x2 − x3)). (2.182)

Defining

d2(a) = (x1 − x3 − a(x2 − x3))T (x1 − x3 − a(x2 − x3)), (2.183)

(2.182) becomes

Q(α) = 2α1 − 1
2
α2

1d
2(a). (2.184)

2.6 Characteristics of Solutions 53

3

2

0 x1

x2

1

Fig. 2.11. An example of a nonsupport vector. From [4, p. 93, c©IEEE 2002]

When

C ≥ 2
d2(a)

, (2.185)

Q(α) is maximized at α1 = 2/d2(a) and takes the maximum

Q

(
2

d2(a)

)
=

2
d2(a)

. (2.186)

Because x1 −x2 and x3 −x2 are orthogonal, d(a) is minimized at a = 1. Thus
Q(2/d2(a)) is maximized at a = 1. Namely, α1 = α2 = 2/d2(a) and α3 = 0.
Because y3 (wT x3 + b) = 1, x3 is a boundary vector.

Definition 2.13. For the L1 support vector machine, a set of support vectors
is irreducible if deletion of all the boundary vectors and any support vector
results in the change of the optimal hyperplane. It is reducible if the optimal
hyperplane does not change for deletion of all the boundary vectors and some
support vectors.

Deletion of nonsupport vectors from the training data set does not change
the solution. In [74], after training, an irreducible set is obtained by deleting
linearly dependent support vectors in the feature space.

In the following theorem, the Hessian matrix associated with a set of sup-
port vectors means that the Hessian matrix is calculated for the support
vectors, not for the entire training data.

Theorem 2.14. For the L1 support vector machine, let all the support vectors
be unbounded. Then the Hessian matrix associated with an irreducible set of
support vectors is positive definite and the Hessian matrix associated with a
reducible set of support vectors is positive semidefinite.

Proof. Let the set of support vectors be irreducible. Then, because deletion
of any support vector results in the change of the optimal hyperplane, any

54 2 Two-Class Support Vector Machines

g(xi) − g(xs) cannot be expressed by the remaining g(xj) − g(xs). Thus the
associated Hessian matrix is positive definite. If the set of support vectors
is reducible, deletion of some support vector, e.g., xi does not result in the
change of the optimal hyperplane. This means that g(xi)−g(xs) is expressed
by the linear sum of the remaining g(xj)−g(xs). Thus the associated Hessian
matrix is positive semidefinite. �

Theorem 2.15. For the L1 support vector machine, let the dimension of the
feature space be finite. Then the number of unbounded support vectors in the
irreducible set cannot exceed the dimension of the feature space plus 1. For the
infinite feature space, the maximum number of unbounded support vectors is
the number of training data. For the L2 support vector machine, the maximum
number of support vectors is the number of training data.

Proof. It is clear from Theorem 2.14 that the theorem holds for the L1 sup-
port vector machine. For the L2 support vector machine, because the Hessian
matrix associated with the training data set is positive definite, the theorem
holds. �

Theorem 2.16. For the L1 support vector machine, if there is only one irre-
ducible set of support vectors and the support vectors are all unbounded, the
solution is unique.

Proof. Delete the nonsupport vectors from the training data. Then because
the set of support vectors is irreducible, the associated Hessian matrix is
positive definite. Thus, the solution is unique for the irreducible set. Because
there is only one irreducible set, the solution is unique for the given problem.
�

Example 2.17. Consider the two-dimensional case shown in Fig. 2.12, in which
x1 and x2 belong to Class 1 and x3 and x4 belong to Class 2. Because x1,
x2, x3, and x4 form a rectangle, {x1,x3} and {x2,x4} are irreducible sets of
support vectors for the linear kernel.

The training of the L1 support vector machine is to maximize

Q(α) = α1 + α2 + α3 + α4 − 1
2
(
(α1 + α4)2 + (α2 + α3)2

)
(2.187)

subject to

α1 + α2 = α3 + α4, C ≥ αi ≥ 0, i = 1, . . . , 4. (2.188)

For C ≥ 1, (α1, α2, α3, α4) = (1, 0, 1, 0) and (0, 1, 0, 1) are two solutions. Thus,

(α1, α2, α3, α4) = (β, 1 − β, β, 1 − β), (2.189)

where 0 ≤ β ≤ 1, is also a solution. Then (α1, α2, α3, α4) = (0.5, 0.5, 0.5, 0.5)
is a solution.

2.6 Characteristics of Solutions 55

3

2

0 x1

x2

14

1−1

−1

1

Fig. 2.12. Nonunique solutions. From [4, p. 95, c©IEEE 2002]

For the L2 support vector machine, the objective function becomes

Q(α) = α1 + α2 + α3 + α4

−1
2

(
(α1 + α4)2 + (α2 + α3)2 +

α2
1 + α2

2 + α2
3 + α2

4

C

)
. (2.190)

Then for αi = 1/(2 + 1/C) (i = 1, . . . , 4), (2.190) becomes

Q(α) =
1

1 +
1

2C

. (2.191)

For α1 = α3 = 1/(1 + 1/C) and α2 = α4 = 0, (2.190) becomes

Q(α) =
1

1 +
1
C

. (2.192)

Thus, for C > 0, Q(α) given by (2.192) is smaller than that given by (2.191).
Therefore, α1 = α3 = 1/(1+1/C) and α2 = α4 = 0 or α2 = α4 = 1/(1+1/C)
and α1 = α3 = 0 are not optimal, but αi = 1/(2 + 1/C) (i = 1, . . . , 4) are.

In general, the number of support vectors for an L2 support vector machine
is equal to or greater than that for an L1 support vector machine. And for
sufficiently large C, the sets of support vectors are the same as shown in
Theorem 2.8. In the original formulation of support vector machines, there
is no mechanism for reducing the number of support vectors. Drezet and
Harrison [75] reformulated support vector machines so that the number of
support vectors is reduced.

Example 2.17 shows nonuniqueness of the dual problem, but the primal
problem is unique because there are unbounded support vectors. Nonunique
solutions occur when there are no unbounded support vectors. Burges and

56 2 Two-Class Support Vector Machines

Crisp [46] derived conditions in which the dual problem is unique but the
primal solution is nonunique. In the following, we discuss nonuniqueness of
primal problems. First consider an example discussed in [46].

Example 2.18. Consider a one-dimensional example shown in Fig. 2.13.

x0

Class 1Class 2

1−1
x1 x2

Fig. 2.13. Nonunique solutions

The dual problem for linear kernels is given as follows. Maximize

Q(α) = α1 + α2 − 1
2

(α2
1 + α2

2 + 2 α1 α2) (2.193)

subject to

α1 − α2 = 0, (2.194)
C ≥ αi ≥ 0 for i = 1, 2. (2.195)

From (2.194), α2 = α1. Then substituting it into (2.193), we obtain

Q(α) = 2α1 − 2 α2
1

= −2
(

α1 − 1
2

)2

+
1
2
, (2.196)

C ≥ αi ≥ 0 for i = 1, 2. (2.197)

For C ≥ 1/2, (2.196) is maximized when α1 = 1/2. Thus from (2.48),
w = 1, and from (2.54), b = 0. For C < 1/2, the optimal solution is given by

α1 = α2 = C. (2.198)

Therefore, w = 2C. But because both α1 and α2 are bounded, from (2.45)

ξ1 = 1 + b − 2C ≥ 0, (2.199)
ξ2 = 1 − b − 2C ≥ 0. (2.200)

Thus, because ξ1 +ξ2 = 2−4C, the primal objective function does not change
if ξ1 and ξ2 change so long as ξ1 + ξ2 = 2 − 4C. Therefore

−1 + 2C ≤ b ≤ 1 − 2C. (2.201)

Because α1 = α2 = C and b is not included in the dual problem, the
dual problem is unique, but the primal problem is not. Namely, the primal

2.6 Characteristics of Solutions 57

objective function w2/2 + C(ξ1 + ξ2) is maximized for w = 2C and (ξ1, ξ2)
that satisfy (2.199) and (2.200).

For the L2 soft-margin support vector machine, the dual problem is given
as follows. Maximize

Q(α) = α1 + α2 − 1
2

((
1 +

1
C

)
(α2

1 + α2
2) + 2α1 α2

)
(2.202)

subject to

α1 − α2 = 0, (2.203)
αi ≥ 0 for i = 1, 2. (2.204)

Substituting α2 = α1 into (2.202), we obtain

Q(α) = 2α1 −
(

2 +
1
C

)
α2

1 (2.205)

subject to α1 ≥ 0. (2.206)

Thus, (2.205) is maximized when

α1 = α2 =
C

2 C + 1
, (2.207)

and from (2.122), b = 0. Therefore, the problem is uniquely solved.

Burges and Crisp [46] derived general conditions in which primal problems
have nonunique solutions. Here, we discuss a simplified version.

Theorem 2.19. If the support vectors are all bounded, b is not uniquely de-
termined and the numbers of support vectors belonging to Classes 1 and 2 are
the same.

Proof. The KKT conditions are given by

(C − αi) ξi = 0, (2.208)
αi

(
yi (wT g(xi) + b) − 1 + ξi

)
= 0. (2.209)

If αi �= 0 and αi �= C, b is uniquely determined by (2.209). Thus, if αi �= 0,
then αi = C. Because

∑
i∈S yi αi = 0, the numbers of support vectors for

Classes 1 and 2 need to be the same for αi = C (i ∈ S).
For αi = C,

ξi = 1 − yi (wT g(xi) + b) ≥ 0. (2.210)

Because the primal objective function concerning w is strictly positive definite,
w is uniquely determined. In addition, because the numbers of support vectors
for Classes 1 and 2 are the same,∑

i∈S

ξi = |S| −
∑
i∈S

yi wT g(xi), (2.211)

58 2 Two-Class Support Vector Machines

which is constant irrespective of the values of ξi. This means that the primal
objective function is constant for different values of ξi. Therefore, b is not
unique, and from (2.210),

min
i∈S,
yi=1

(
1 − wT g(xi)

) ≥ b ≥ max
i∈S,

yi=−1

(−1 − wT g(xi)
)
.� (2.212)

2.6.5 Reducing the Number of Support Vectors

One of the problems of support vector machines is that when the numbers
of input variables and support vectors are large, classification is slow. To
overcome this problem, Burges [43] proposed simplifying decision rules by
approximating the weight vector by the major eigenvalues. Some extended
support vector methods [164], and others used support vector–like methods
[58, 59].

Here we first show the geometrical interpretation of hard-margin support
vector machines [132], and then we consider the possibility of reducing the
number of support vectors [252].

The solution of a hard-margin support vector machine can be geometrically
interpreted [132]. Let U1 and U2 be the convex hulls for Class 1 and Class 2
training data, respectively. Because the solution exists, U1 and U2 do not
overlap. Let u∗

1 and u∗
2 give the minimum distance between U1 and U2:

min
u1∈U1,u2∈U2

‖u1 − u2‖. (2.213)

Then the optimal hyperplane passes through the middle point of u∗
1 and u∗

2
and perpendicular to u∗

1 − u∗
2. Thus, w and b are given by

w =
2(u∗

1 − u∗
2)

‖u∗
1 − u∗

2‖2 , (2.214)

b = −‖u∗
1‖2 − ‖u∗

2‖2

‖u∗
1 − u∗

2‖2 . (2.215)

It is noted that u∗
1 and u∗

2 are not necessarily training data. In Fig. 2.14
(a), one is a training datum but the other is not; in Fig. 2.14 (b), both are
the training data. Thus in a special case, the optimum separating hyperplane
is expressed by two support vectors. This interpretation holds for L1 and L2
support vector machines so long as the problem is linearly separable in the
feature space.

From this discussion, we can show the following theorem.

Theorem 2.20. An optimal hyperplane, which is expressed by a set of support
vectors and a bias term, can be expressed by one unbounded support vector,
the associated vector in the feature space, and the bias term.

2.6 Characteristics of Solutions 59

0 x1

x2

0 x1

x2

(a) (b)

Fig. 2.14. Geometrical interpretation of linearly separable solution: (a) More than
two support vectors. (b) Two support vectors

Proof. Let the index set of support vectors for a given problem be S. Then
the weight vector is given by

w =
∑
i∈S

yi αi g(xi). (2.216)

Select one unbounded support vector and let this be x+, which belongs to
Class 1. Define z− in the feature space by

z− = g(x+) − 2 δ2 w, (2.217)

where δ is the margin of the separating hyperplane. Because w is orthogonal
to the hyperplane and 2δ is the distance between the two hyperplanes on
which the unbounded support vectors reside, z− satisfies D(z−) = −1. For
the two vectors x+ and z−, the optimal separating hyperplane goes through
(g(x+) + z−)/2 and is orthogonal to (g(x+) − z−)/2. Thus it is the same as
the original separating hyperplane. �

If x− that satisfies z− = g(x−), i.e., the preimage of z−, exists, the support
vectors can be reduced to two. Or if v that satisfies g(v) = w exists, we can
evaluate the decision function by D(x) = H(x,v) + b, which will result in a
considerable speedup.

In [215, pp. 544–5], a simple calculation method of the preimage is pro-
posed if it exists and if H(x,x′) = f(xT x′), where f(·) is some scalar function.
Let {e1, . . . , em} be the basis of the input space. Then

H(v, ej) = f(vj)

60 2 Two-Class Support Vector Machines

= wT g(ej)

=
∑
i∈S

αi yi f(xij), (2.218)

where xij is the jth element of xi. For the polynomial kernel, f(vj) = (vj+1)d.
Thus, if d is odd, the inverse exists and

vj = f−1

(∑
i∈S

αi yi f(xij)

)
. (2.219)

This seems to be correct. Indeed, with linear kernels, g−1(z−) = z−, or
g−1(w) = w. But if an m-dimensional vector x is mapped into an
l-dimensional space (l > m), the inverse of w does not exist. Consider the
case where H(x,x′) = xT x′ + 1 and g(v) = a1g(x1) + a2g(x2). Thus,
g(x) = (1,xT)T and l = m + 1. Then the following (m + 1) equations must
be satisfied for m variables:

1 = a1 + a2, (2.220)
v1 = a1 x11 + a2 x21, (2.221)

· · ·
vm = a1 x1m + a2 x2m. (2.222)

This set of simultaneous equations is solved only when (2.220) is satisfied.
For the polynomial kernel with degree 2 with a one-dimensional input x,

H(x, x′) = (1 + x x′)2 and g(x) is given by

g(x) = (1,
√

2 x, x2)T . (2.223)

Thus, the following equations must be satisfied:

1 = a1 + a2, (2.224)
v = a1 x1 + a2 x2, (2.225)

v2 = a1 x2
1 + a2 x2

2, (2.226)

which is, in general, unsolvable.
In general, a set of l equations must be satisfied for m variables. Thus, if

l �= m, the inverse does not exist. This is caused by the fact that the region
of g(x) is nonconvex, as discussed in Section 2.3.4.

This is discouraging because Theorem 2.20 is useful only when d = 1,
which is trivial.

To evaluate the speedup by reducing the number of support vectors to
two, we used the data sets listed in Table 1.1. Table 2.6 shows the results for
d = 1. The columns “SVs,” “Original,” “Reduced,” and “Speedup” show the
number of support vectors, the classification time of the training and test data
using the support vectors, the classification time using the reduced support
vectors, and the speedup by reduction, respectively. From the table, it is seen,
except for the thyroid data, that the speedup is roughly the number of support
vectors divided by two.

2.6 Characteristics of Solutions 61

Table 2.6. Classification speedup by reducing the number of support vectors to
two (d = 1)

Data SVs Original Reduced Speedup

(s) (s)

Blood cell 14 8 1 8.0

Thyroid 80 33 10 3.3

Hiragana-50 11 263 49 5.4

Hiragana-13 7 113 31 3.6

Hiragana-105 13 1029 158 6.5

2.6.6 Degenerate Solutions

Rifkin, Pontil, and Verri [201] discussed degenerate solutions in which w = 0
for L1 support vector machines. Fernández [82] derived similar results for L1
support vector machines, although he did not refer to degeneracy. Degener-
acy occurs also for L2 support vector machines. In the following, we discuss
degenerate solutions following the proof in [82].

Theorem 2.21. Let C = K C0, where K and C0 are positive parameters and
α∗ be the solution of the L1 support vector machine with K = 1. Define

w(α) =
M∑
i=1

αi yi g(xi). (2.227)

Then the necessary and sufficient condition for

w(α∗) = 0 (2.228)

is that K α∗ is also a solution for any K (> 1).

Proof. We prove the theorem for L2 support vector machines. The proof for
L1 support vector machines is obtained by deleting αT α/(2C) in the following
proof.
Necessary condition. Let α′ be the optimal solution for C = KC0 (K >
1) and w(α′) �= 0. Define α′ = Kα′′. Then, because α′′ satisfies the equality
constraint, it is a nonoptimal solution for C = C0. Then for C = C0,

Q(α∗) =
M∑
i=1

α∗
i − α∗T α∗

2 C0

≥ Q(α′′) =
M∑
i=1

α′′
i − 1

2
w(α′′)T w(α′′) − α

′′T α′′

2 C0
. (2.229)

62 2 Two-Class Support Vector Machines

For C = KC0 (K > 1),

Q(Kα∗) = K

M∑
i=1

α∗
i − Kα∗T α∗

2 C0
≤ Q(Kα′′)

= K

M∑
i=1

α′′
i − K2

2
w(α′′)T w(α′′) − Kα

′′T α′′

2 C0
. (2.230)

Multiplying all the terms in (2.229) by K and comparing it with (2.230), we
see the contradiction. Thus, Kα∗ is the optimal solution for K > 1.
Sufficient condition. Suppose Kα∗ is the optimal solution for any C =
K C0 (≥ 1). Thus for any C = K C0 (≥ 1),

Q(Kα∗) =
M∑
i=1

K α∗
i − 1

2
K2 wT (α∗)w(α∗) − K α∗T α∗

2 C0

≥ Q(α∗) =
M∑
i=1

α∗
i − 1

2
wT (α∗)w(α∗) − α∗T α∗

2 C0
. (2.231)

Rewriting (2.231), we have

M∑
i=1

α∗
i ≥ K + 1

2
wT (α∗)w(α∗) +

α∗T α∗

2 C0
. (2.232)

Because (2.232) is satisfied for any large K, w(α∗) = 0 must be satisfied.
Otherwise Kα∗ cannot be the optimal solution. �

Example 2.22. Now reconsider the case shown in Fig. 2.5. Here, we use the
linear kernel. The inequality constraints given by (2.40) are

−w + b ≥ 1 − ξ1, (2.233)
−b ≥ 1 − ξ2, (2.234)

w + b ≥ 1 − ξ3. (2.235)

The dual problem for the L1 support vector machine is given as follows.
Maximize

Q(α) = α1 + α2 + α3 − 1
2

(−α1 + α3)2 (2.236)

subject to

α1 − α2 + α3 = 0, (2.237)
C ≥ αi ≥ 0 for i = 1, 2, 3. (2.238)

From (2.237), α2 = α1 + α3. Then substituting it into (2.236), we obtain

2.6 Characteristics of Solutions 63

Q(α) = 2α1 + 2 α3 − 1
2

(−α1 + α3)2, (2.239)

C ≥ αi ≥ 0 for i = 1, 2, 3. (2.240)

Because Q(α) is symmetric for α1 and α3, it is maximized when α1 = α3.
Thus the optimal solution is given by

α1 =
C

2
, α2 = C, α3 =

C

2
. (2.241)

Therefore, x = −1, 0, and 1 are support vectors; and w = 0 and b = 1. Because
the two unbounded support vectors, α1 and α3, belong to the same class, this
is an abnormal solution; all the data are classified into Class 1, irrespective of
the input.

The dual objective function for the L2 support vector machine is given by

Q(α) = α1 + α2 + α3 − 1
2

(−α1 + α3)2 − α2
1 + α2

2 + α2
3

2 C
. (2.242)

The objective function is maximized when

α1 = α3 =
2 C

3
, α2 =

4 C

3
. (2.243)

Thus, w = 0 and b = 1. Therefore, any datum is classified into Class 1.

2.6.7 Duplicate Copies of Data

Nonunique solutions occur when duplicate copies of the datum with the same
label are included in the training data. If xi = xj , a solution α∗ satisfies
α∗

i = α∗
j . This can be shown as follows. Suppose α∗

i �= α∗
j . Then because of the

symmetry of the variables, (αi, αj) = (α∗
j , α

∗
i) is also a solution. Because for

quadratic programming problems the nonunique solutions cannot be isolated
[46], the nonunique solution satisfies

αi = β α∗
i + (1 − β) α∗

j , (2.244)
αj = (1 − β) α∗

i + β α∗
j , (2.245)

where 0 ≤ β ≤ 1. Then setting β = 1/2,

αi = αj =
α∗

i + α∗
j

2
. (2.246)

Let {x1, . . . ,xM} be a set of training data with each datum different from
the others. Assume that for each xi we add ζi − 1 copies of xi to the set.
Then using the preceding result, the same ζi data share the same Lagrange
multiplier. Thus the training of the L1 support vector machine for the set is
to maximize [52]

64 2 Two-Class Support Vector Machines

Q(α) =
M∑

i = 1

ζi αi − 1
2

M∑
i,j=1

ζi αi ζj αj yi yj H(xi,xj) (2.247)

subject to the constraints
M∑

i = 1

yi ζi αi = 0, 0 ≤ αi ≤ C for i = 1, . . . , M. (2.248)

Changing the variables by α′
i = ζi αi, (2.247) and (2.248) become, respec-

tively,

Q(α′) =
M∑

i = 1

α′
i − 1

2

M∑
i,j=1

α′
i α′

j yi yj H(xi,xj), (2.249)

M∑
i = 1

yi α′
i = 0, 0 ≤ α′

i ≤ ζi C for i = 1, . . . , M. (2.250)

Thus, if the solution does not have bounded support vectors, the solution is
the same as that without copies.8

The training of the L2 support vector machine for the set of training data
is to maximize

Q(α) =
M∑

i = 1

ζi αi − 1
2

M∑
i,j=1

ζi αi ζj αj yi yj

(
H(xi,xj) +

δij

ζi C

)
(2.251)

subject to the constraints
M∑

i = 1

yi ζi αi = 0, αi ≥ 0 for i = 1, . . . , M. (2.252)

Changing the variables by α′
i = ζi αi, (2.251) and (2.252) become, respec-

tively,

Q(α′) =
M∑

i = 1

α′
i − 1

2

M∑
i,j=1

α′
i α′

j yi yj

(
H(xi,xj) +

δij

ζi C

)
, (2.253)

M∑
i = 1

yi α′
i = 0, α′

i ≥ 0 for i = 1, . . . , M. (2.254)

Thus, an addition of copied data affects the solution of the L2 support vector
machine.

To estimate the generalization ability of classifiers using a small set of
data, resampling with replacement is often used. To speed up evaluation, it is
advisable to use (2.249) and (2.250), or (2.253) and (2.254) instead of copying
data.

8The formulation given by (2.249) and (2.250) is the same as that of the fuzzy
support vector machine discussed in [151].

2.6 Characteristics of Solutions 65

2.6.8 Imbalanced Data

In medical diagnosis, usually, misclassification of abnormal data into the nor-
mal class is less favorable than misclassification of normal data into the abnor-
mal class. To control misclassification, Veropoulos, Campbell, and Cristianini
[260] proposed preparing different margin parameters C+ and C− for the nor-
mal (+1) and abnormal (−1) classes, respectively, and setting C− > C+. Lee,
Gunn, Harris, and Reed [144] applied this method to diagnosis problems with
imbalanced data. By setting the ratio of C+ and C− about the ratio of the
number of data for Classes −1 and 1, better classification performance was
obtained than by the conventional support vector machine. Xu and Chan [275]
determined the ratios of a one-against-all support vector machine by genetic
algorithms.

For imbalanced data, resampling, which allows multiple selection of the
same datum, is usually used. In that situation, we had better use the formu-
lation of support vector machines discussed in Section 2.6.7.

In some classification problems, a priori class probabilities are given, and
they are different from the ratios of class data to the total data. To compensate
for this disparity, Cawley and Talbot [52] proposed the formulation discussed
in Section 2.6.7. Namely, for the class j datum xi we set

ζi =
po

j

pt
j

, (2.255)

where po
j is the a priori probability for class j and pt

j is given by the number
of class j data divided by the number of total training data.

In [94], the bias term is adjusted for the unbalanced data from the link
between the least squares support vector machines and kernel discriminant
analysis.

2.6.9 Classification for the Blood Cell Data

In this section we show the effect of parameters on classification using the
blood cell data for Classes 2 and 3 in Table 1.1. Except for the Class 2 training
data set, which includes 399 data, training and test data sets include 400 data
each. The blood cell data are very difficult to classify, and Classes 2 and 3 are
the most difficult.

We investigated the effect of kernel parameters and the margin parameter
C on the recognition rates and the number of support vectors using L1 and
L2 support vector machines.

Figure 2.15 shows the recognition rates for the change of the polynomial
degree fixing C = 5000. For d = 1 (i.e., linear kernels), the recognition rates of
the training data are about 90 percent for L1 and L2 support vector machines
and for d larger than 2, the recognition rates are 100 percent. Thus the training
data are not linearly separable. For the change of d, the recognition rates of

66 2 Two-Class Support Vector Machines

Polynomial degree

R
ec

og
ni

tio
n

ra
te

 (
%

)

L1 train.

80

85

90

95

100

1 2 3 4 5 6 7 8

L2 train.

L1 test

L2 test

Fig. 2.15. Recognition rates of the blood cell data with polynomial kernels

the test data do not change very much for L1 and L2 support vector machines.
This means that overfitting does not occur in this case.

Figure 2.16 shows the number of support vectors for the change of the
polynomial degree under the same conditions as those in Fig. 2.15. As seen
from Fig. 2.16, because the blood cell data are not linearly separable, especially
for the L2 support vector machine, a large number of support vectors are
necessary for d = 1. For the polynomial degree lower than 4, the number of
support vectors for the L2 support vector machine is larger than that for the
L1 support vector machine, but for degrees higher than 3, they are almost the

90

110

130

150

170

190

1 2 3 4 5 6 7 8

Polynomial degree

S
up

po
rt

 v
ec

to
rs

L1

L2

Fig. 2.16. Number of support vectors for the blood cell data with polynomial kernels

2.6 Characteristics of Solutions 67

same. From Figs. 2.15 and 2.16, for d larger than 3, behaviors of the L1 and
L2 support vector machines are almost the same.

Figure 2.17 shows the recognition rates for the RBF kernel with different
values of γ fixing C = 5000. The recognition rates of the L1 and L2 support
vector machines are almost the same, and for γ lager than 1, the recognition
rates of the training data are 100 percent. For the change of γ, the recognition
rates of the test data do not change very much for L1 and L2 support vector
machines.

Figure 2.18 shows the number of support vectors for the RBF kernel with
different values of γ under the same conditions as those in Fig. 2.17. For
γ smaller than 1, the number of support vectors for the L2 support vector
machine is larger than for the L1 support vector machine, but for γ larger
than or equal to 1, they are almost the same. For γ = 100, the numbers of
support vectors are 396. As γ becomes smaller, the radius of RBF becomes
smaller. Thus, a larger number of support vectors are necessary to classify the
training data correctly. Similar to the case with the polynomial kernels, the
behaviors of the L1 and L2 support vector machines are almost the same for
γ larger than 1.

Figure 2.19 shows the recognition rates when C is changed with the poly-
nomial degree of 4. As the value of C is increased, the weight for the sum
(square sum) of the slack variables is increased. Thus the recognition rate of
the training data is improved, and the recognition rate reaches 100 percent for
C = 1000. On the other hand, the recognition rate of the test data gradually
decreases. Thus there is a tendency of overfitting. Similar to the previous re-
sults, the recognition rates of L1 and L2 support vector machines are almost
the same.

80

85

90

95

100

γ

R
ec

og
ni

tio
n

ra
te

 (
%

)

L1 train.L2 train.

L2 test

L1 test

0.001 0.01 0.1 1 10 100

Fig. 2.17. Recognition rates of the blood cell data with RBF kernels

68 2 Two-Class Support Vector Machines

50

100
150

200

250

300
350

400
S

up
po

rt
 v

ec
to

rs

γ

0.001 0.01 0.1 1 10 100

L1

L2

Fig. 2.18. Number of support vectors for the blood cell data with RBF kernels

85

90

95

100

R
ec

og
ni

tio
n

ra
te

 (
%

)

0.01 0.1 1 10 100 1000

C

L2 train.

L1 train.

L2 test

L1 test

Fig. 2.19. Recognition rates of the blood cell data with the polynomial kernel
(d = 4) for the change of C

Figure 2.20 shows the numbers of support vectors for the change of C. As
the value of C increases, the weight of the (square) sum of slack variables is
increased. Thus the number of support vectors decreases. At C = 1000, the
number of support vectors for the L1 and L2 support vector machines is 93
each.

To investigate the robustness of support vector machines, as outliers, we
added 10 data belonging to classes other than 2 and 3 to Class 2 training

2.6 Characteristics of Solutions 69

90

110

130

150

170

190

210

0.01 0.1 1 10 100 1000

C

S
up

po
rt

 v
ec

to
rs

L1

L2

Fig. 2.20. Number of support vectors for the blood cell data with polynomial kernels
(d = 4) for the change of C

data. Figure 2.21 shows the recognition rate of the test data against the margin
parameter C when outliers were added and not added. We used the L2 support
vector machine. For C = 0.01, the recognition rate with outliers is much worse
than without outliers. But with C larger than or equal to 0.01, the difference
is not so significant. Thus if an appropriate value is set to C, the support
vector machine is robust against outliers.

60

70

80

90

R
ec

og
ni

tio
n

ra
te

 (
%

)

With outliers

0.001 0.01 0.1 1 10 100 1000

C

Without outliers

Fig. 2.21. Recognition rates against the margin parameter C for the inclusion of
outliers

70 2 Two-Class Support Vector Machines

From the computer simulations for the blood cell data, the following ten-
dencies are seen.

1. The recognition rate of the training data increased as the polynomial de-
gree, γ in RBF kernels, or the value of C is increased. But the recognition
rate of the test data does not change very much.

2. In theory, for C = ∞, L1 and L2 support vector machines are equivalent.
But by computer simulations, this condition may be loosened; for appro-
priately large d or γ and C, the recognition rates of the training and test
data and the number of support vectors are almost the same for the L1
and L2 support vector machines.

3. For an appropriately chosen value of C, the effect of outliers on the recog-
nition rate is not significant.

2.7 Class Boundaries for Different Kernels

In this section we discuss how class boundaries change as kernels are changed
for a two-class problem. For the linear kernel, the class boundary is a hyper-
plane. For the polynomial kernel with degree 2, the class boundary is a hy-
perplane, a hyperellipsoid (see Fig. 2.22), or a hyperparabola (see Fig. 2.23).
This class boundary is equivalent to that of the fuzzy classifier with ellipsoidal
regions.

Class 1

x1

x2

0

Class 2

g1(x) = 0

Fig. 2.22. An ellipsoidal boundary by a polynomial kernel with the degree of two

To clarify how class regions are clustered for a given kernel, we restrict our
discussion to one input variable. For a polynomial kernel with degree 3,

2.7 Class Boundaries for Different Kernels 71

Class 1

x1

x2

0

Class 2

g1(x) = 0

Class 1

g1(x) = 0

Fig. 2.23. Parabolic boundaries by a polynomial kernel with the degree of two

H(x, x′) = (x x′ + 1)3

= 1 + 3x′ x + 3 x′2 x2 + x′3 x3

= (1,
√

3 x,
√

3 x2, x3) (1,
√

3 x′,
√

3 x′2, x′3)T . (2.256)

Thus the function that maps x into the feature space z is given by g(x) =
(1,

√
3 x,

√
3 x2, x3)T . Therefore, the hyperplane in the feature space is given

by
w0 + w1 x + w2 x2 + w3 x3 = 0. (2.257)

Because the maximum number of solutions of (2.257) for x is 3, the input
regions of both Classes 1 and 2 are divided into two subregions in maximum
(see Fig. 2.24). In general, for a polynomial kernel with degree n, n + 1 sub-
regions are generated in maximum. If n is even, the input regions of both
Classes 1 and 2 are divided into (n + 2)/2 and n/2 subregions in maximum.
And if n is odd, those of Classes 1 and 2 are divided into (n+1)/2 subregions
in maximum.

For an RBF kernel, the induced feature space has infinite dimensions.
Therefore, the hyperplane in the feature space can divide the input space into
any number of subregions. This is also true for a three-layer neural network
kernel. Thus we need not worry about clustering the training data before
training.

In a feature space induced by an RBF kernel, data are on the sur-
face of the unit hypersphere centered at the origin because gT (x)g(x) =
exp(−γ‖x−x‖2) = 1 [280]. Thus, the optimal separating hyperplane D(x) = 0
and hyperplanes D(x) = ±1 must intersect with the hypersphere. Figure 2.25
shows an illustration of class regions for a hard-margin support vector ma-

72 2 Two-Class Support Vector Machines

x

y

0

Class 1Class 1 Class 2 Class 2

1

−1

: Support vectors,

Fig. 2.24. Class regions by a polynomial kernel with the degree of three. Regions
for Classes 1 and 2 are divided into two

Class 1

Class 2

: Support vectors,

Fig. 2.25. Class regions by an RBF kernel in the feature space

chine. In this way training data that are not linearly separable in the input
space are separated in the feature space.

2.8 Developing Classifiers

In this section, we discuss how to develop classifiers with high generalization
ability. Here we do not consider optimizing the input features. Thus our aim
is to develop the classifier that realizes the best generalization ability for the

2.8 Developing Classifiers 73

given input-output training pairs. Here we call the classifier with the best
generalization ability the optimal classifier.

2.8.1 Model Selection

In training a support vector machine we need to select a kernel and set a
value to the margin parameter C. Thus to develop the optimal classifier, we
need to determine the optimal kernel parameter and the optimal value of C.
Determining the optimal classifier is called model selection.

The model selection is usually done by estimating the generalization abili-
ties for the grid points in the kernel-parameter-and-C plane, and selecting the
classifier that realizes the highest generalization ability.

The most reliable but time-consuming method of estimating the gener-
alization ability is cross-validation based on repetitive training of support
vector machines. Thus to shorten model selection time, several measures for
estimating the generalization ability have been proposed.

2.8.2 Estimating Generalization Errors

Cross-validation is a widely used technique to estimate the generalization error
of a classifier. Instead of using cross-validation, many measures to estimate the
generalization error of support vector machines, which are based on statistical
learning theory, are proposed. In the following, we briefly summarize these
measures.

Cross-Validation

Cross-validation is used to measure the generalization error of classifiers for
a limited number of gathered data. In cross-validation, the M given data are
divided into two data sets, Str

i (i = 1, . . . , MCl), which includes l training
data, and Sts

i , which includes M − l test data. Then for the training data
set Str

i the classifier is trained and tested for the test data set Sts
i . This is

repeated for all the combinations (MCl) of the partitioned training and test
data sets, and the total recognition rate for all the test data sets is calculated
as the estimation of the classification performance. But because this is a time-
consuming task, we usually use k-fold cross-validation.

In k-fold cross validation, training data are randomly divided into approx-
imately equal sized k subsets, and a classifier is trained using k − 1 subsets
and tested using the remaining subset. Training is repeated k times, and the
total recognition rate for all the k subsets that are not included in the training
data is calculated. A leave-one-out method (LOO) is a special case of cross-
validation (l = M − 1) and k-fold cross validation. The leave-one-out error is
known to be an unbiased estimate of the test error [258, p. 265].

For classifiers other than support vector machines, LOO is a time-
consuming task when the number of training data is large. But for support

74 2 Two-Class Support Vector Machines

vector machines, once we have trained a support vector machine, we need
to apply LOO only to support vectors. This is because even if we delete the
training data other than support vectors, these data are correctly classified.
Cauwenberghs and Poggio’s decremental training [51] further speeds up LOO
by deleting one support vector from the trained support vector machine.

Saadi, Cawley, and Talbot [208] discussed acceleration of the leave-one-
out procedure of least squares support vector machines (see Section 4.1). For
leaving the jth datum out, we strike out the jth row and jth column of
the coefficient matrix in the set of linear equations that determines α and b.
Thus in solving the set of equations by the Gauss-Jordan elimination, we can
avoid calculation of the first to (j − 2)nd elimination by caching these results
obtained for the (j−1)st datum. Ying and Keong [278] trained a least squares
support vector machine using all the training data and then used the matrix
inversion lemma to speed up the leave-one-out procedure.

Error Bound by VC Dimension

The VC (Vapnik-Chervonenkis) dimension is the theoretical basis of support
vector machines and is defined as the maximum number of samples that can
be separated into any combination of two sets by the set of functions. Because
the set of m-dimensional hyperplanes can separate at most m + 1 samples,
the VC dimension of the set is m + 1 (see Fig. 2.26).

x1

x2

x1

x2

(a) (b)

1

4

3

2

0 0

Fig. 2.26. VC dimension of a set of lines: (a) Any three data can be separated into
any combination of two sets of data by a single line. (b) Sets of data {1, 4} and {2,
4} can be separated into the two sets by a line but sets of data {1, 2} and {3, 4}
cannot. Thus the VC dimension of the set of lines is three

According to Vapnik’s theory [212, pp. 1–15], the generalization error of a
support vector machine is bounded with the probability of at least 1 − η by

R(w, b) ≤ Remp(w, b) + φ, (2.258)

2.8 Developing Classifiers 75

where Remp(w, b) is the empirical risk (classification error) for the M training
data and φ is the confidence interval (classification error) for the unknown
data:

φ =

√√√√√h

[
ln
(

2M

h

)
+ 1
]

− ln
(η

4

)
M

. (2.259)

Here h is the VC dimension of a set of hyperplanes, and for the hard-margin
optimal separating hyperplane, the VC dimension of the hyperplanes with
margin ‖w‖−1, h, is bounded by [44, 256, 258]

h ≤ min(D2‖w‖2, l) + 1. (2.260)

Here D is the diameter of the smallest hypersphere that includes all the train-
ing data. We can determine R by the method discussed in Section 7.1.

When the training data are linearly separable in the feature space, the
empirical risk Remp(w, b) is zero. Thus if we minimize φ, we can maximize
the generalization ability. From (2.259), φ is the monotonic function of the
VC dimension h. Thus φ is minimized by minimizing h. From (2.260), this is
realized by maximizing the margin ‖w‖−1. When the training data are not
linearly separable in the feature space, Remp(w, b) is not zero. In this case the
generalization ability is determined by the trade-off between the empirical risk
and the confidence interval via the margin parameter C.

LOO Error Rate Estimators

Several measures for estimating the LOO error rate have been proposed. By
taking the average of the LOO error rate for possible combinations of training
data, we obtain the error bound for the test data. The error rate estimators
discussed in the following need to train the support vector machine using the
training data once.

1. Vapnik [256]
The LOO error rate is bounded by

εloo ≤ |S|
M

, (2.261)

where εloo is the LOO error rate for the given training data, |S| is the
number of support vectors, and M is the number of training data.

Assume that we delete a datum, which is not a support vector, from
the training data set. Then the support vector machine trained using the
reduced training data set correctly classifies the deleted datum. But if a
support vector is deleted, the classification result cannot be estimated.
Thus assuming that all the support vectors are misclassified, (2.261) is
obtained.

76 2 Two-Class Support Vector Machines

2. Joachims ξ α estimators [122, 123]
The LOO error rate is bounded by

εloo ≤ |{i | 2 αi R2
∆ + ξi ≥ 1}|
M

, (2.262)

where R2
∆ is the upper bound that satisfies

c ≤ H(x,x′) ≤ c + R2
∆ (2.263)

for all x and x′. Because the inequality on the right-hand side of (2.262)
does not hold for zero αi, (2.262) is an improved version of (2.261).

3. Vapnik and Chapelle [56, 258]
The LOO error rate is bounded by

εloo ≤
Sm max(D, 1/

√
C)
∑
i∈U

αi + |B|

M
, (2.264)

where D is the diameter of the smallest hypersphere that includes the
training data, U is the set of unbounded support vector indices, B is the
set of bounded support vector indices, and Sm is the span of support
vectors and is defined as follows:

Sm = max
p

Sp,

S2
p = min

x∈Λp

(xp − x)2,

Λp =

⎧⎨
⎩
∑

i∈S,i�=p

λixi |
∑

i∈S,i�=p

λi = 1, αi + yi yp αp λi ≥ 0 for ∀i �= p

⎫⎬
⎭ .

Here Sp is the distance between support vector xp and the set Λp, and
S is the set of support vector indices. The bounded support vectors are
assumed to be misclassified when deleted by the LOO procedure.

To optimize parameters of support vector machines, the error bound need
not be accurate so long as it shows the correct tendency for the parameter
change. Duan, Keerthi, and Poo [76] evaluated the five-fold cross-validation,
the LOO bounds by (2.262), φ in (2.258) with h evaluated by (2.260), and
(2.264) for three benchmark data sets with 400 to 1300 training data. The RBF
kernels were used, and C and γ were tuned using the preceding four measures
for the training data. Then the best recognition rates of the test data sets
were compared with the recognition rates obtained by model selection. The
five-fold cross-validation gave the best results, and the bound by (2.262) gave
the second best. Because Sm in (2.264) was replaced by DU , which is the
diameter of the smallest hypersphere that includes the unbounded support
vectors, the results were not good.

2.9 Invariance for Linear Transformation 77

Anguita, Boni, and Ridella [18] evaluated the bound given by (2.260) for
the six data sets with 80 to 958 data by the first-order accurate bootstrap
[78]. For a fixed γ for the RBF kernels, 1000 training data sets were generated
by drawing from the original training data set with replacement. Then for
each data set, the support vector machine was trained and the average and
standard deviation of the right-hand side of (2.260) were evaluated. Although
the bound given by (2.260) was loose, it had the same tendency with the
recognition rates evaluated for the data not included in the generated training
data.

2.8.3 Sophistication of Model Selection

Because model selection is time-consuming, several methods have been devel-
oped to ease model selection [68, 180, 181, 213, 220]. Cristianini and Campbell
[68] showed that the bound on the generalization error is smooth in the kernel
parameter. Namely, when the margin is optimal, small variations in the kernel
parameter result in small variations in the margin. Then the model selection
for the RBF kernel is done as follows. Train the support vector machine with
a small value of σ, evaluate the error bound, increment the value of σ, and
repeat the procedure until the optimal parameter is obtained.

Friedrichs and Igel [87] used evolution strategies to further tune the pa-
rameters obtained by grid search. They showed, by computer experiments,
that using the generalized RBF kernel (Mahalanobis kernel):

H(x,x′) = exp
(−(x − x′)T A (x − x′)

)
, (2.265)

where A is a positive definite matrix, the generalization ability was improved
with a smaller number of support vectors.

Lebrun, Charrier, and Cardot [142] used the vector quantization technique
to replace training data with a smaller number of prototypes and then to speed
up model selection.

2.9 Invariance for Linear Transformation

Because fuzzy classifiers with ellipsoidal regions [3, pp. 208–9] are based on
the Mahalanobis distance, they are invariant for the linear transformation of
input variables; specifically translation, scaling, and rotation invariant. But
most classifiers, such as multilayer neural networks, are not. Thus, to avoid
the influence of variables with large input ranges on the generalization ability,
we usually scale the ranges of input variables into [0, 1] or [−1, 1].

In [215, pp. 333–58] and [45], invariance of the kernel method, in which
a small variance of the input does not affect the classification results, is dis-
cussed.

In this section, we discuss invariance of support vector machines for linear
transformation of input variables [6]. Here, we consider translation, scaling,

78 2 Two-Class Support Vector Machines

and rotation. Then, we clarify the relationships between the input ranges [0, 1]
and [−1, 1].

The Euclidean distance is used to calculate the margins, and it is rotation-
and translation-invariant but not scale-invariant. Therefore, support vector
machines with linear kernels are rotation- and translation-invariant but not
scale-invariant. In general, the Euclidean distance is not scale-invariant, but if
all the input variables are scaled with the same factor, the Euclidean distance
changes with that factor. Therefore here we consider the following transfor-
mation:

z = s Ax + c, (2.266)

where s (> 0) is a scaling factor, A is an orthogonal matrix and satisfies
AT A = I, and c is a constant vector.

Now the RBF kernel H(z, z′) is given by

H(z, z′) = exp(−γ′ ‖s Ax + c − s Ax′ − c‖2)
= exp(−γ′ ‖s A (x − x′)‖2)
= exp(−γ′ s2 ‖x − x′‖2). (2.267)

Therefore, RBF kernels are translation- and rotation-invariant. For s �= 1, if

γ′s2 = γ, (2.268)

H(z, z′) = H(x,x′). Thus, if (2.268) is satisfied, the optimal solutions for a
training data set and the data set transformed by (2.266) are the same.

The neural network kernel H(z, z′) is given by

H(z, z′) =
1

1 + exp(ν′ (s Ax + c)T (s Ax′ + c) − a)
. (2.269)

If c �= 0, (2.269) is not invariant. Setting c = 0, (2.269) becomes

H(z, z′) =
1

1 + exp(ν′ s2 xT x′ − a)
. (2.270)

Therefore, neural network kernels are rotation-invariant. If

ν′s2 = ν (2.271)

is satisfied, H(z, z′) = H(x,x′). Thus, if (2.271) is satisfied, the optimal so-
lutions for a training data set and the data set transformed by (2.266) with
c = 0 are the same.

For the linear kernel, H(z, z′) is given by

H(z, z′) = (s Ax + c)T (s Ax′ + c)
= s2 xT x′ + s cT Ax′ + sxT AT c + cT c. (2.272)

Training of the L1 support vector machine with a data set transformed by
(2.266) is as follows. Find α′

i (i = 1, . . . , M) that maximize

2.9 Invariance for Linear Transformation 79

Q(α′) =
M∑

i = 1

α′
i − 1

2

M∑
i,j=1

α′
i α′

j yi yj

×(s2 xT
i xj + s cT Axj + sxT

i AT c + cT c) (2.273)

subject to the constraints

M∑
i = 1

yi α′
i = 0, 0 ≤ α′

i ≤ C ′ for i = 1, . . . , M. (2.274)

Using (2.274), (2.273) becomes

Q(α′) =
M∑

i = 1

α′
i − 1

2

M∑
i,j=1

α′
i α′

j yi yj s2 xT
i xj

= s−2

⎛
⎝ M∑

i = 1

s2 α′
i − 1

2

M∑
i,j=1

s2 α′
i s2 α′

j yi yj xT
i xj

⎞
⎠ . (2.275)

Thus, setting αi = s2 α′
i, the inequality constraint in (2.274) becomes

0 ≤ αi ≤ s2 C ′ for i = 1, . . . , M. (2.276)

Therefore, the optimal solutions of the L1 support vector machine with the
linear kernel for a training data set and the data set transformed by (2.266)
are the same when

C = s2C ′. (2.277)

This also holds for L2 support vector machines.
For the polynomial kernel, H(z, z′) is given by

H(z, z′) =
(
(s Ax + c)T (s Ax′ + c) + 1

)d
=
(
s2 xT x′ + s cT Ax′ + sxT AT c + cT c + 1

)d
. (2.278)

Therefore, polynomial kernels are rotation-invariant but neither scale- nor
translation-invariant. This is also true for L2 support vector machines using
polynomial kernels. Assuming that (2.278) is approximated by the term with
the highest degree of s (at least s > 1 is necessary):

H(z, z′) = s2d (xT x′)d, (2.279)

similar to the discussions for the linear kernel, the support vector machines
with a data set and the data set transformed by (2.266) perform similarly
when

C = s2d C ′. (2.280)

80 2 Two-Class Support Vector Machines

In training support vector machines, we normalize the range of input vari-
ables into [0, 1] or [−1, 1], without knowing their difference. Using our previ-
ous discussions, however, we can clarify relations of the solutions. Because the
transformation from [0, 1] to [−1, 1] is given by

z = 2x − 1, (2.281)

it is a combination of translation and scaling. Thus according to the previous
discussions, we can obtain the parameter values that give the same or roughly
the same results for the two input ranges. Table 2.7 summarizes this result.

Table 2.7. Parameters that give the same or roughly the same solutions

Kernel [0, 1] [−1, 1]

Linear 4 C C

Polynomial ≈ 4d C C

RBF 4 γ γ

NN ≈ 4 ν ν

To see the validity of Table 2.7, especially for the polynomial kernels, we
conducted the simulation using the blood cell data and the thyroid data sets
listed in Table 1.1. For both data sets, we selected data for Classes 2 and
3. The numbers of training and test data are listed in Table 2.8. We trained
the L1 support vector machine for the blood cell data and the L2 support
vector machine for the thyroid data. For the input range of [−1, 1], we set
C = 5000 and for [0, 1], we set it appropriately according to Table 2.7. For
the polynomial kernels, we changed C for [0, 1] from 4 × 5000 = 20,000 to
4d × 5000.

Table 2.8. Training and test data for the blood cell and thyroid data

Data Training data Test data

Class 2 Class 3 Class 2 Class 3

Blood cell 399 400 400 400

Thyroid 191 3488 177 3178

2.9 Invariance for Linear Transformation 81

Table 2.9. Solutions of the L1 SVM for the blood cell data

Kernel Range PARM Test rate Train. rate SVs Q(α)

(%) (%)

Linear [0, 1] C20,000 87.00 90.23 103 (89) 1,875,192

[−1, 1] C5000 87.00 90.23 103 (89) 1,875,192/4

[0, 1] C5000 88.50 92.23 101 (52) 331,639

d2 [0, 1] C20,000 86.25 94.24 103 (51) 1,191,424

[0, 1] C80,000 86.75 95.99 96 (34) 4,060,006

[−1, 1] C5000 86.75 95.49 99 (35) 4,137,900/16

[0, 1] C5000 88.25 96.24 99 (31) 237,554

[0, 1] C20,000 86.00 97.49 98 (19) 672,345

d3 [0, 1] C80,000 85.75 99.00 97 (4) 1,424,663

[0, 1] C320,000 86.50 100 93 1,839,633

[−1, 1] C5000 86.00 100 90 (1) 2,847,139/64

RBF [0, 1] γ4 89.00 92.48 99 (58) 358,168

[−1, 1] γ1 89.00 92.48 99 (58) 358,168

Table 2.9 lists the recognition rates of the blood cell test and training data,
the number of support vectors, and the value of Q(α) for the L1 support vector
machine. The numerals in parentheses show the numbers of bounded support
vectors. For the linear kernel, as the theory tells us, the solution with the
ranges of [0, 1] and C = 20,000 and that with [−1, 1] and C = 5000 are the
same. For the RBF kernels also, the solution with [0, 1] and γ = 4 and that
with [−1, 1] and γ = 1 are the same.

For the polynomial kernel with d = 2, the solution with [0, 1] and C =
4d ×5000 = 80,000 and that with [−1, 1] and C = 5000 are similar. The value
of Q(α) with C = 80,000 is near the value of Q(α) × 16 with C = 5000.
Similar results hold for d = 3, although the difference between the values of
Q(α) are widened compared to that for d = 2.

Table 2.10 lists the recognition rates of the thyroid test and training data,
the number of support vectors, and the value of Q(α) for the L2 support
vector machine.

For the linear and RBF kernels, the solutions with the range of [0, 1] and
the associated solutions are the same.

For the polynomial kernels, the solution with [0, 1] and C = 5000 and that
with [−1, 1] and 4d × 5000 are similar.

82 2 Two-Class Support Vector Machines

Table 2.10. Solutions of the L2 SVM for the thyroid data

Kernel Range PARM Test rate Train. rate SVs Q(α)

(%) (%)

Linear [0, 1] C20,000 97.50 98.34 474 2,096,156

[−1, 1] C5000 97.50 98.34 474 2,096,156/4

[0, 1] C5000 98.12 99.18 275 298,379

d2 [0, 1] C20,000 98.18 99.29 216 974,821

[0, 1] C80,000 98.21 99.37 191 3,360,907

[−1, 1] C5000 97.85 99.37 201 3,357,314/16

[0, 1] C5000 97.97 99.40 217 206,335

[0, 1] C20,000 98.15 99.57 168 642,435

d3 [0, 1] C80,000 98.06 99.76 131 1,993,154

[0, 1] C320,000 97.94 99.86 106 5,626,809

[−1, 1] C5000 97.65 99.92 125 4,691,633/64

γ [0, 1] γ4 97.91 97.35 237 3,816,254

[−1, 1] γ1 97.91 97.35 237 3,816,254

Theoretical analysis and the computer experiments showed that the input
ranges of [0, 1] and [−1, 1] are interchangeable for polynomial kernels with
constant terms and RBF kernels. Namely, we can use either range. But for
polynomial kernels without constant terms, it is unfavorable to use [−1, 1] as
discussed in Section 2.3.4.

3

Multiclass Support Vector Machines

As discussed in Chapter 2, support vector machines are formulated for two-
class problems. But because support vector machines employ direct decision
functions, an extension to multiclass problems is not straightforward. There
are roughly four types of support vector machines that handle multiclass prob-
lems:

1. one-against-all support vector machines,
2. pairwise support vector machines,
3. error-correcting output code (ECOC) support vector machines, and
4. all-at-once support vector machines.

According to Vapnik’s formulation [256], in one-against-all support vector
machines, an n-class problem is converted into n two-class problems and for
the ith two-class problem, class i is separated from the remaining classes. But
by this formulation unclassifiable regions exist if we use the discrete decision
functions.

To solve this problem, in pairwise support vector machines, Kreßel [140]
converts the n-class problem into n(n − 1)/2 two-class problems, which cover
all pairs of classes. But by this method unclassifiable regions also exist.

We can resolve unclassifiable regions by introducing membership functions
[10, 116], decision trees [134, 192, 194, 240, 242], or error-correcting output
codes [73] or by determining the decision functions all at once [65, 257, 269,
270].

Especially for one-against-all support vector machines, if we use continuous
decision functions instead of discrete decision functions, unclassifiable regions
are resolved.

In the preceding methods the code words are discrete and fixed before
training. But there are some approaches to optimize codes using continuous
code words [66, 200].

In the following, we discuss the four types of support vector machines and
their variants that resolve unclassifiable regions, and we clarify their relation-
ships, advantages, and disadvantages through theoretical analysis and com-

84 3 Multiclass Support Vector Machines

puter experiments. Specifically, we prove that one-against-all support vector
machines with continuous decision functions are equivalent to one-against-
all fuzzy support vector machines [5]. We show that generalization ability of
decision-tree-based support vector machines [134, 192, 194] depends on their
structure and discuss how to optimize their structure [240, 242]. And we clarify
the relationship between fuzzy support vector machines and ECOC support
vector machines.

3.1 One-against-All Support Vector Machines

In this section, first we discuss a one-against-all support vector machine with
discrete decision functions and its problem that unclassifiable regions exist.
Then we discuss three methods to solve the problem: one-against-all support
vector machines with continuous decision functions, fuzzy support vector ma-
chines, and decision-tree-based support vector machines. We show that one-
against-all support vector machines with continuous decision functions and
fuzzy support vector machines are equivalent.

3.1.1 Conventional Support Vector Machines

Consider an n-class problem. For a one-against-all support vector machine,
we determine n direct decision functions that separate one class from the
remaining classes. Let the ith decision function, with the maximum margin
that separates class i from the remaining classes, be

Di(x) = wT
i g(x) + bi, (3.1)

where wi is the l-dimensional vector, g(x) is the mapping function that maps
x into the l-dimensional feature space, and bi is the bias term.

The hyperplane Di(x) = 0 forms the optimal separating hyperplane, and
if the classification problem is separable, the training data belonging to class
i satisfy Di(x) ≥ 1 and those belonging to the remaining classes satisfy
Di(x) ≤ −1. Especially, support vectors satisfy yi Di(x) = 1. If the problem
is inseparable, unbounded support vectors satisfy yi Di(x) = 1 and bounded
support vectors satisfy yi Di(x) ≤ 1. The remaining training data satisfy
yi Di(x) ≥ 1.

In classification, if for the input vector x

Di(x) > 0 (3.2)

is satisfied for one i, x is classified into class i. Because only the sign of the
decision function is used, the decision is discrete.

If (3.2) is satisfied for plural is or if there is no i that satisfies (3.2), x is
unclassifiable. Consider the three-class problem with two-dimensional input as

3.1 One-against-All Support Vector Machines 85

shown in Fig. 3.1, where the arrows show the positive sides of the hyperplanes.
For Datum 1, x1, the three decision functions are

D1(x1) > 0, D2(x1) > 0, D3(x1) < 0.

Because x1 belongs to both Classes 1 and 2, x1 is unclassifiable. Likewise, for
Datum 2, x2, the three decision functions are

D1(x2) < 0, D2(x2) < 0, D3(x2) < 0.

Thus, x2 is unclassifiable.

Class 1

Class 3
Class 2

D2(x) = 0

D3(x) = 0

D1(x) = 0

0 x1

x2

2

1

Fig. 3.1. Unclassifiable regions by the one-against-all formulation

To avoid this, instead of discrete decision functions, continuous decision
functions are proposed for classification. Namely, datum x is classified into
the class

arg max
i=1,...,n

Di(x). (3.3)

Then Datum 1 in Fig. 3.1 is classified into Class 1 because D1(x1) is the
maximum among the three. Likewise, Datum 2 is classified into Class 1.

In Section 3.1.3, the meaning of (3.3) is explained from the membership
functions defined in the directions orthogonal to the optimal hyperplanes.

3.1.2 Fuzzy Support Vector Machines

In this section, we introduce membership functions into one-against-all sup-
port vector machines to resolve unclassifiable regions, while realizing the same

86 3 Multiclass Support Vector Machines

classification results for the data that are classified by conventional one-
against-all support vector machines. We introduce two operators: minimum
and average operators to define membership functions for classes.

One-Dimensional Membership Functions

For class i we define one-dimensional membership functions mij(x) in the
directions orthogonal to the optimal separating hyperplanes Dj(x) = 0 as
follows:

1. For i = j

mii(x) =
{

1 for Di(x) ≥ 1,
Di(x) otherwise. (3.4)

2. For i �= j

mij(x) =
{

1 for Dj(x) ≤ −1,
−Dj(x) otherwise. (3.5)

Class 1

D 1
(x

) =
 0

D 1
(x

) =
 1

D 1
(x

) =
 −

1

D
eg

re
e

of
 m

em
be

rs
hi

p

1

0

0 x1

x2

C
la

ss
 2

Class 3

Fig. 3.2. Definition of one-dimensional membership function

Figure 3.2 shows the membership function m11(x) for the two-dimensional
input space. Because for a separable classification problem only the class i

3.1 One-against-All Support Vector Machines 87

training data exist when Di(x) ≥ 1, we assume that the degree of class i
membership is 1 for Di(x) ≥ 1 and Di(x) otherwise. We assume that the same
is true even if inseparable. Here, we allow the negative degree of membership
so that any data not on the boundary can be classified.

For i �= j, class i is on the negative side of Dj(x) = 0. In this case, support
vectors may not include class i data (as is the case with Class 3 in Fig. 3.2), but
when Dj(x) ≤ −1, we assume that the degree of class i degree of membership
is 1, otherwise −Dj(x).

Membership Functions for Classes

We define the class i membership function of x by the minimum operation for
mij(x) (j = 1, . . . , n):

mi(x) = min
j=1,...,n

mij(x), (3.6)

or the average operation:

mi(x) =
1
n

∑
j=1,...,n

mij(x). (3.7)

The datum x is classified into the class

arg max
i=1,...,n

mi(x). (3.8)

Now consider the difference of membership functions given by (3.6) and
(3.7). By the definition of mij(x) given by (3.4) and (3.5), for x ∈ Ri where

Ri = {x |Di(x) > 1, Dj(x) < −1, j �= i, j = 1, . . . , n}, (3.9)

mi(x) = 1 for both (3.6) and (3.7). Because mi(x) = 1 is satisfied for only
one i, x ∈ Ri is classified into class i. Thus, both membership functions give
the same classification result for the data in Ri. Therefore, the difference of
the membership functions occurs for mi(x) < 1. It is shown in Section 3.1.3
that the class boundaries by the support vector machine with the minimum or
average operator are the same as those by the one-against-all support vector
machine with continuous decision functions.

Figure 3.3 shows the membership functions m1(x) for the minimum and
average operators for two decision functions. For the minimum operator, a
contour line, which has the same degree of membership, lies in parallel to
the surface of R1. The membership function with the average operator has a
similar shape to that with the minimum operator for the region, where the
degree of one of the two one-dimensional functions is 1.

According to the formulation, the unclassifiable regions shown in Fig. 3.1
are resolved as shown in Fig. 3.4. This gives the similar class boundaries
proposed by Bennett [29].

88 3 Multiclass Support Vector Machines

m1(x) = 1

(a) (b)

0.5

0

m1(x) = 1

0.5

0.75

Fig. 3.3. Membership functions: (a) Minimum operator. (b) Average operator

Class 1

Class 3
Class 2

0 x1

x2

D1(x) = 0

D3(x) = 0

D2(x) = 0

Fig. 3.4. Extended generalization regions

3.1 One-against-All Support Vector Machines 89

Because the decision boundary between classes i and j is given by mi(x) =
mj(x), the decision boundary changes as the output of the decision functions
is normalized. Mayoraz and Alpaydin [165] discussed three ways to normalize
the outputs. By this normalization, however, the classification results change
only for the data in the unclassifiable regions caused by discrete decision
functions.

3.1.3 Equivalence of Fuzzy Support Vector Machines and Support
Vector Machines with Continuous Decision Functions

Here, we show that one-against-all support vector machines with continu-
ous decision functions and one-against-all fuzzy support vector machines with
minimum or average operators are equivalent in that they give the same clas-
sification result for the same input [136].

Let mm
i (x) and ma

i (x) be the membership functions for class i using the
minimum and average operators, respectively.

Then (3.6) and (3.7) are rewritten as follows:

mm
i (x) = min

(
min(1, Di(x)), min

k �=i,
k=1,...,n

min(1,−Dk(x))

)
, (3.10)

ma
i (x) =

1
n

⎛
⎝min(1, Di(x)) +

n∑
k=1,k �=i

min(1,−Dk(x))

⎞
⎠ . (3.11)

Thus ma
i (x) − ma

j (x) is given by

ma
i (x) − ma

j (x) =
1
n

(min(1, Di(x)) + min(1,−Dj(x))

− min(1, Dj(x)) − min(1,−Di(x))). (3.12)

Now we prove the equivalence classifying the cases into three:

1. Di(x) > 0, Dj(x) ≤ 0 (j = 1, . . . , n, j �= i)

By the support vector machine with continuous decision functions, input
x is classified into class i.

From (3.10) and the conditions on the signs of Dk (k = 1, . . . , n),

mm
i (x) > 0, mm

j (x) ≤ 0. (3.13)

Thus by the fuzzy support vector machine with minimum operators, input
x is classified into class i.

From (3.12),

ma
i (x) − ma

j (x) =
1
n

(min(1, Di(x)) + min(1,−Dj(x))

−Dj(x) + Di(x)) > 0. (3.14)

90 3 Multiclass Support Vector Machines

Thus by the fuzzy support vector machine with average operators, input
x is classified into class i.

2. 0 > Di(x) > Dj(x) (j = 1, . . . , n, j �= i)

By the support vector machine with continuous decision functions, x is
classified into class i.

From (3.10) and the conditions on the signs of Dk(x) (k = 1, . . . , n),

mm
i (x) > mm

j (x). (3.15)

Thus input x is classified into class i by the fuzzy support vector machine
with minimum operators.

From (3.12),

ma
i (x) − ma

j (x) =
1
n

(Di(x) − Dj(x)

− min(1,−Di(x)) + min(1,−Dj(x))) > 0. (3.16)

Thus input x is classified into class i by the fuzzy support vector machine
with average operators.

3. Di(x) > Dj(x) > 0 > Dk(x), where j ∈ N1, k ∈ N2, N1 ∩ N2 = φ,
(N1 ∪ N2) ∩ {i} = φ, N1 ∪ N2 ∪ {i} = {1, . . . , n}

Input x is classified into class i by the support vector machine with con-
tinuous decision functions.

From (3.10),

mm
i (x) = min

j∈N1
−Dj(x), (3.17)

mm
j (x) = −Di(x) for j ∈ N1, (3.18)

mm
k (x) = min(−Di(x), Dk(x)) for k ∈ N2. (3.19)

Thus,

mm
i (x) > mm

j (x) for j ∈ N1 ∪ N2. (3.20)

Therefore, x is classified into class i by the fuzzy support vector machine
with minimum operators.

From

ma
i (x) − ma

j (x) =
1
n

(min(1, Di(x)) − Dj(x)

− min(1, Dj(x)) + Di(x)) > 0 for j ∈ N1 (3.21)

and from (3.14),

3.1 One-against-All Support Vector Machines 91

ma
i (x) > ma

j (x) for j ∈ N1 ∪ N2. (3.22)

Thus, input x is classified into class i by the fuzzy support vector machine
with average operators.

Therefore, one-against-all support vector machines with continuous decision
functions and the fuzzy support vector machines with minimum or average
operators are equivalent.

3.1.4 Decision-Tree-Based Support Vector Machines

To resolve unclassifiable regions in one-against-all support vector machines,
in this section we discuss decision-tree-based support vector machines [240].
Namely, we train n − 1 support vector machines; the ith (i = 1, . . . , n − 1)
support vector machine is trained so that it separates class i data from data
belonging to one of classes i + 1, i + 2, . . . , n. After training, classification is
performed from the first to the (n − 1)st support vector machines. If the ith
support vector machine classifies a datum into class i, classification terminates.
Otherwise, classification is performed until the datum is classified into the
definite class.

Figure 3.5 shows an example of class boundaries for four classes, when
linear kernels are used. As seen from the figure, the classes with smaller class
numbers have larger class regions. Thus the processing order affects the gen-
eralization ability. In some applications, the structure of a decision tree is
determined by the relationships of inclusion among classes [125], but in most
cases we need to determine the structure. In a usual decision tree, each node
separates one set of classes from another set of classes. And to divide the set of
classes into two, in [218, 219] the k-means clustering algorithm is used. With
k = 2, the data in the set are clustered into two clusters. And if the data in
one class are clustered into the two clusters, the class data are considered to
reside in the cluster with the larger number of data.

In the following, we discuss determining the structure of decision trees
using distance measures.

Architecture of Decision Trees

Because the more data are misclassified at the upper node of the decision tree,
the worse the classification performance becomes, the classes that are easily
separated need to be separated at the upper node of the decision tree. To
determine the decision tree, we use the fact that the neighborhood relations
of data in the input space are kept in the feature space. We use four types of
decision trees as follows:

1. Type 1 decision tree. At each node one class is separated from the
remaining classes using the Euclidean distance as a separability measure.

92 3 Multiclass Support Vector Machines

Class 1

Class 4

Class 3

Class 2

D1(x) = 0

D2(x) = 0

D3(x) = 0

x2

x10

Fig. 3.5. Resolution of unclassifiable regions by decision-tree formulation

2. Type 2 decision tree. At each node some classes are separated from
the remaining classes using the Euclidean distance as a separability mea-
sure.

3. Type 3 decision tree. At each node one class is separated from the
remaining classes using classification errors by the Mahalanobis distance
as a separability measure.

4. Type 4 decision tree. At each node some classes are separated from
the remaining classes using classification errors by the Mahalanobis dis-
tance as a separability measure.

In the following, we discuss these algorithms in detail for an n-class problem.

Type 1 Decision Tree

In this method, we calculate the Euclidean distances between the class centers
and recursively separate the farthest class from the remaining classes.

1. Calculate the class centers ci (i = 1, . . . , n) by

ci =
1

|Xi|
∑
x∈Xi

x (3.23)

and the distance between class i and class j, dij (i, j = 1, . . . , n), by

dij (= dji) = ‖ci − cj‖. (3.24)

3.1 One-against-All Support Vector Machines 93

Here Xi is a set of training data included in class i and |Xi| is the number
of elements in Xi.

2. Find the smallest value of dij for class i,

li = min
j �=i

dij , (3.25)

and regard the class that has the largest li as the farthest class and cal-
culate the optimal hyperplane that separates this class. Namely, separate
class k from the others. Here k = arg max

i
li. If plural ks exist for these

classes, compare the next smallest distance l′i and k = arg max
i

l′i.

3. If the remaining classes exist, repeat Step 2. Otherwise, terminate the
algorithm.

Type 2 Decision Tree

Using the distances between class centers, repeat merging the two nearest
classes until two clusters are obtained, and separate the clusters by the optimal
hyperplane.

1. Using (3.23), calculate the class centers and the distances between class i
and class j, dij(i, j = 1, . . . , n) by (3.24). Initially, we assume that all the
classes belong to different clusters.

2. For the classes that belong to different clusters, calculate the smallest
value of distances by (3.25) and let the associated two classes belong to
the same cluster.

3. Repeat Step 2 (n−2) times so that all the clusters merge into two clusters.
4. Calculate the optimal hyperplane that separates the clusters generated in

Step 3.
5. If the separated cluster in Step 4 has n′(> 2) classes, regard the classes as

belonging to different clusters and repeat Step 2 (n′ − 2) times and go to
Step 4. If n′ = 2, calculate the optimal hyperplane that separates the two
classes. If no cluster has more than one class, terminate the algorithm.

Type 3 Decision Tree

First, we classify the training data using the Mahalanobis distance and de-
termine the optimal hyperplane that separates the class with the smallest
misclassifications from the remaining classes.

1. For each class, calculate the covariance matrix Qi (i = 1, . . . , n) by

Qi =
1

|Xi|
∑
x∈Xi

(x − ci)(x − ci)T , (3.26)

where ci is the center vector of class i given by (3.23). Calculate the
Euclidean distance between class centers using (3.24). For all the data,
calculate the Mahalanobis distance di(x):

94 3 Multiclass Support Vector Machines

di
2(x) = (x − ci)T Qi

−1(x − ci) for i = 1, . . . , n (3.27)

and classify them to the nearest classes.
2. Let eij be the number of class i data misclassified into class j.
3. Calculate the number of misclassified data for class i by∑

j �=i,
j=1,...,n

(eij + eji)

and separate the class that has the smallest value from the others. If plural
classes have the same value, separate the class with the farthest Euclidean
distance among these classes.

4. If the remaining classes exist, repeat Step 3. Otherwise, terminate the
algorithm.

Type 4 Decision Tree

In this method, we first classify the data using the Mahalanobis distance and
then repeat merging the two most misclassified classes.

1. Initially, we assume that all classes belong to different clusters. Do Steps
1 and 2 in the Type 3 algorithm.

2. For the two classes in different clusters, find the largest value of eij and
regard classes i and j as belonging to the same cluster. If plural classes
have the same value, similar to a Type 2 decision tree, merge the two
nearest classes.

3. Repeat Step 2 until the number of clusters becomes two, and calculate a
hyperplane that separates these two clusters.

4. If the number of classes in a cluster separated in Step 3, n′, is larger than
2, let these classes belong to different clusters and repeat Steps 2 and 3. If
n′ = 2, calculate the optimal hyperplane that separates these two classes.
If no cluster includes more than one class, terminate the algorithm.

Performance Evaluation

Because there is not much difference of generalization abilities among Type 1
to Type 4 decision trees, in the following we show only the results for Type 1
decision trees.

We compared the recognition rates of the test data for Type 1 decision
trees and those of the conventional one-against-all and fuzzy support vector
machines using the data sets listed in Table 1.1. We used the polynomial kernel
with degrees 2 to 4. The ranges of the input variables were normalized into
[0, 1]. We trained the support vector machine by the primal-dual interior-point
method combined with the decomposition technique.

3.1 One-against-All Support Vector Machines 95

We set C = 20,000 for the thyroid data set; C = 10,000 for the MNIST
data set; and C = 2000 for the remaining data sets. We used an Athron MP
2000 personal computer.

Table 3.1 shows the recognition rates of the test data for the conven-
tional one-against-all support vector machine, fuzzy support vector machine
(FSVM), and Type 1 decision tree. The best recognition rate in a row is
shown in bold. Column “Train.” on the left lists the training time for SVM
and FSVM, and the column on the right lists the training time for the Type
1 decision tree.

Table 3.1. Performance of decision-tree SVMs

Data Kernel SVM FSVM Train. Type 1 Train.

(%) (%) (s) (%) (s)

Iris d2 92.00 94.67 – 93.33 –

d3 93.33 94.67 – 93.33 –

Numeral d2 99.02 99.39 0.5 99.76 0.2

d3 98.90 99.51 0.5 99.76 0.3

Thyroid d2 95.13 97.20 245 97.78 5

d3 95.51 97.40 290 97.84 5

d4 95.57 97.58 21 97.72 5

Blood cell d2 88.77 93.03 24 92.45 9

d3 88.84 93.10 23 92.19 8

d4 86.61 92.68 22 91.48 7

Hiragana-50 d2 95.73 99.07 126 97.74 50

d3 96.20 99.35 123 98.00 52

d4 96.33 99.37 136 98.07 53

Hiragana-105 d2 99.99 100 530 99.99 247

d3 100 100 560 100 237

Hiragana-13 d2 96.25 99.50 238 98.17 64

d3 96.09 99.35 229 98.28 63

d4 96.12 99.34 231 98.44 64

MNIST d2 96.06 98.17 2760 97.71 870

d3 96.56 98.38 4166 97.74 967

96 3 Multiclass Support Vector Machines

From the table, the recognition rate of the Type 1 decision tree is, in most
cases, better than that of the SVM, but except for the numeral and thyroid
data sets, it is lower than that of the FSVM, although the difference is small.

The training times of the SVM and the FSVM are the same. From the
table, the training time of Type 1 decision tree is usually two to four times
shorter than that of the SVM. This is because in training a Type 1 decision
tree, the number of training data decreases as training proceeds from the top
node to the leaf nodes, but for the SVM all the training data are used to
determine n decision functions.

3.2 Pairwise Support Vector Machines

In this section, we discuss pairwise support vector machines and their vari-
ants. Pairwise support vector machines reduce the unclassifiable regions that
occur for one-against-all support vector machines. But unclassifiable regions
still exist. To resolve unclassifiable regions, we discuss fuzzy support vector
machines and decision-tree-based support vector machines.

3.2.1 Conventional Support Vector Machines

In pairwise support vector machines, we determine the decision functions for
all the combinations of class pairs. In determining a decision function for a
class pair, we use the training data for the corresponding two classes. Thus,
in each training session, the number of training data is reduced considerably
compared to one-against-all support vector machines, which use all the train-
ing data. But the number of decision functions is n(n − 1)/2, compared to n
for one-against-all support vector machines, where n is the number of classes.

Let the decision function for class i against class j, with the maximum
margin, be

Dij(x) = wT
ij g(x) + bij , (3.28)

where wij is the l-dimensional vector, g(x) is a mapping function that maps
x into the l-dimensional feature space, bij is the bias term, and Dij(x) =
−Dji(x).

The regions

Ri = {x |Dij(x) > 0, j = 1, . . . , n, j �= i} (3.29)

do not overlap, and if x is in Ri, we classify x into class i. If x is not in
Ri (i = 1, . . . , n), we classify x by voting. Namely, for the input vector x we
calculate

Di(x) =
n∑

j �=i,j=1

sign(Dij(x)), (3.30)

3.2 Pairwise Support Vector Machines 97

where

sign(x) =
{

1 for x ≥ 0,
−1 for x < 0, (3.31)

and we classify x into the class

arg max
i=1,...,n

Di(x). (3.32)

If x ∈ Ri, Di(x) = n − 1 and Dk(x) < n − 1 for k �= i. Thus x is
classified into i. But if any of Di(x) is not n − 1, (3.32) may be satisfied for
plural is. In this case, x is unclassifiable. In the shaded region in Fig. 3.6,
Di(x) = 0 (i = 1, 2, and 3). Thus the shaded region is unclassifiable, although
the unclassifiable region is much smaller than that for the one-against-all
support vector machine shown in Fig. 3.1.

Class 1

Class 3
Class 2

D23(x) = 0

D13(x) = 0
D12(x) = 0

0 x1

x2

Fig. 3.6. Unclassifiable regions by the pairwise formulation. From [10, p. 115]

3.2.2 Fuzzy Support Vector Machines

Architecture

Similar to the one-against-all formulation, we introduce the membership func-
tion to resolve unclassifiable regions while realizing the same classification re-
sults with that of the conventional pairwise classification. To do this, for the
optimal separating hyperplane Dij(x) = 0 (i �= j) we define one-dimensional
membership functions mij(x) in the directions orthogonal to Dij(x) = 0 as
follows:

98 3 Multiclass Support Vector Machines

mij(x) =
{

1 for Dij(x) ≥ 1,
Dij(x) otherwise. (3.33)

We define the class i membership function of x by the minimum operation
for mij(x) (j �= i, j = 1, . . . , n):

mi(x) = min
j �=i,

j=1,...,n

mij(x), (3.34)

or the average operation:

mi(x) =
1

n − 1

n∑
j �=i,
j=1

mij(x). (3.35)

Now an unknown datum x is classified into the class

arg max
i=1,...,n

mi(x). (3.36)

Equation (3.34) is equivalent to

mi(x) = min

(
1, min

j �=i,
j=1,...,n

Dij(x)

)
. (3.37)

Because mi(x) = 1 holds for only one class, classification with the minimum
operator is equivalent to classifying x into the class

arg max
i=1,...,n

min
j �=i,

j=1,...,n

Dij(x). (3.38)

Thus, the unclassifiable region shown in Fig. 3.6 is resolved as shown in
Fig. 3.7 for the fuzzy support vector machine with the minimum operator.

3.2.3 Performance Comparison of Fuzzy Support Vector Machines

In this section we compare L1 and L2 support vector machines for one-against-
all and pairwise classification for the data sets listed in Table 1.1. We scaled
the input ranges into [0, 1]. Except for the MNIST data set, we determined the
kernels and parameters by five-fold cross-validation. We used linear kernels;
polynomial kernels with degrees 2, 3, and 4; and RBF kernels with γ = 0.1, 1,
and 10. The values of C were selected from 1, 50, 100, 1000, 3000, 5000,
7000, 10,000, and 100,000. We selected the kernel and parameters with the
highest recognition rate for the validation set. If the same recognition rate
was obtained, we broke the tie by selecting the simplest structure as follows:

1. Select the kernel and parameters with the highest recognition rate for the
training data.

2. Select polynomial kernels from polynomial and RBF kernels.

3.2 Pairwise Support Vector Machines 99

Class 1

Class 3
Class 2

D23(x) = 0

D13(x) = 0
D12(x) = 0

0 x1

x2

Fig. 3.7. Extended generalization regions. From [10, p. 116]

3. Select the polynomial kernel with the smallest degree from polynomial
kernels.

4. Select the RBF kernel with the smallest value of γ from RBF kernels.
5. Select the value with the largest value of C from different values of C.

For the MNIST data set, we set C = 10,000 and selected the kernel that
realized the maximum recognition rate for the test data.

Tables 3.2 and 3.3 list the results for one-against-all L1 and L2 SVMs and
pairwise L1 and L2 SVMs. The “Parm” row lists the kernel and the value of
C selected. If the values of C selected by cross-validation are different for the
minimum and average operators, we only show the value for the minimum
operator. The “Dis.,” “Min,” and “Avg.” rows list the recognition rates of the
test data, those of the training data in parentheses if lower than 100 percent,
with discrete functions, minimum, and average operators, respectively. The
“SVs” row lists the number of average support vectors per decision function
and the numeral in parentheses shows the number of bounded support vectors
for L1 SVMs. The maximum recognition rate of the test data for a data set
is shown in bold.

For some cases, such as pairwise SVMs for the iris data, the recognition
rates of the discrete SVMs and fuzzy SVMs are the same. This means that
no test data were in the unclassifiable regions. Except for these cases, the
recognition rates of the fuzzy SVMs are better. As the theory tells us, the
recognition rates by minimum operators and average operators are the same
for the one-against-all SVMs. In addition, for pairwise SVMs there is not much
difference.

100 3 Multiclass Support Vector Machines

Table 3.2. Performance comparison of support vector machines

Data Item One-against-all Pairwise

L1 SVM L2 SVM L1 SVM L2 SVM

Iris Parm γ0.1, C5000 d1, C2000 γ1, C100 γ0.1, C100

Dis. 92.00 (97.33) 69.33 (74.67) 97.33 (98.67) 97.33

Min 94.67 94.67 97.33 (98.67) 97.33

Avg. 94.67 94.67 97.33 (98.67) 97.33

SVs 10 (5) 25 10 (7) 21

Numeral Parm γ1, C50 d3, C1 d2, C1 γ0.1, C1000

Dis. 99.02 (99.51) 99.15 99.63 99.76

Min 99.27 (99.88) 99.63 99.63 99.76

Avg. 99.27 (99.88) 99.63 99.63 99.76

SVs 15 (3) 47 6 13

Thyroid Parm d4, C105 d4, C105 d1, C105 d3, C104

Dis. 95.97 (99.84) 96.09 (99.89) 97.29 (98.59) 97.67 (99.95)

Min 97.93 (99.97) 97.81 97.61 (98.75) 97.93 (99.95)

Avg. 97.93 (99.97) 97.81 97.64 (98.73) 97.93 (99.95)

SVs 87 (7) 96 68 (52) 55

Blood Parm d2, C3000 γ10, C100 d1, C50 d2, C10

cell Dis. 86.87 (94.93) 90.39 (94.80) 91.58 (95.41) 92.87 (96.51)

Min 93.16 (97.68) 93.58 (97.19) 92.03 (95.58) 92.97 (96.61)

Avg. 93.16 (97.68) 93.58 (97.19) 92.06 (96.03) 92.94 (96.58)

SVs 92 (29) 188 19 (11) 34

H-50 Parm γ10, C5000 γ10, C1000 γ10, C104 γ10, C104

Dis. 97.72 97.74 99.00 99.09

Min 99.26 99.28 99.11 99.11

Avg. 99.26 99.28 99.11 99.11

SVs 71 97 21 21

H-13 Parm γ10, C3000 γ10, C500 γ10, C7000 γ10, C2000

Dis. 98.10 98.68 (99.83) 99.63 99.70

Min 99.63 99.69 (99.96) 99.74 99.76

Avg. 99.63 99.69 (99.96) 99.70 99.72

SVs 39 (1) 71 10 11

3.2 Pairwise Support Vector Machines 101

Table 3.3. Performance comparison of support vector machines

Data Item One-against-all Pairwise

L1 SVM L2 SVM L1 SVM L2 SVM

H-105 Parm γ10, C104 γ10, C104 γ10, C104 γ10, C104

Dis. 100 100 99.93 100

Min 100 100 99.95 100

Avg. 100 100 99.94 100

SVs 91 91 13 26

MNIST Parm γ10, C104 γ10, C104 γ10, C104 γ10, C104

Min 98.55 98.55 98.32 98.32

SVs 2287 2295 602 603

Comparing L1 and L2 SVMs, there is not much difference in the recogni-
tion rates of the test data, but usually L2 SVMs require more support vectors.

Comparing one-against-all and pairwise SVMs, we can see the following
observations:

1. The recognition improvement of pairwise classification by the introduc-
tion of membership functions is small. Thus, the unclassifiable regions by
pairwise SVMs are smaller than those by one-against-all SVMs.

2. In most cases, the recognition rates of the test data by the pairwise fuzzy
SVMs are almost the same as those by the one-against-all SVMs.

3. The number of support vectors of pairwise SVMs is smaller than that of
one-against-all SVMs. This is because in pairwise SVMs one class needs
to be separated from another class but in one-against-all SVMs, one class
needs to be separated from the remaining classes; thus more support vec-
tors are necessary. But the total number of support vectors for the pairwise
SVMs may be larger for n > 3 because n (n − 1)/2 decision functions are
necessary.

3.2.4 Cluster-Based Support Vector Machines

In a one-against-all support vector machine, all the training data are used
for training, but for a pairwise support vector machine, training data for
two classes are used at a time. Thus for a large problem, a pairwise sup-
port vector machine handles much a smaller number of training data than a
one-against-all support vector machine. But if the number of data for one class
is very large, training becomes prohibitive, even for a pairwise support vector
machine. To solve the problem in such a situation, Lu et al. [156] proposed
dividing the training data for each class into clusters and determining, like

102 3 Multiclass Support Vector Machines

pairwise support vector machines, decision functions for cluster pairs. We call
this a cluster-based support vector machine. In the following, we discuss the
architecture of cluster-based support vector machines with minimum opera-
tors.

Assume that class i (i = 1, . . . , n) is divided into Ni clusters and we denote
the jth cluster for class i cluster ij. Let the decision function for cluster ij
and cluster op be

Dij−op(x) = wT
ij−opg(x) + bij−op, (3.39)

where g(x) is a mapping function from x to the l-dimensional feature space,
wij−op is an l-dimensional vector, bij−op is a bias term, and Dij−op(x) =
−Dop−ij(x). For cluster ij, we determine the decision function Dij(x) using
Dij−op (o �= i, o = 1, . . . , n, j = 1, . . . , No):

Dij(x) = min
o�=i,o=1,...,n,

p=1,...,No

Dij−op(x). (3.40)

Now if x belongs to cluster ij, x needs to be classified into class i. Thus, we
define the decision function for class i by

Di(x) = max
j=1,...,Ni

Dij(x). (3.41)

Then unknown x is classified into

arg max
i=1,...,n

Di(x). (3.42)

For the special case where each class consists of one cluster, (3.42) reduces to
(3.38), which is equivalent to a pairwise fuzzy support vector machine.

Example 3.1. Consider the case where each of two classes consists of two clus-
ters as shown in Fig. 3.8. Cluster 11 is separated from Clusters 21 and 22 by
D11−21(x) = 0 and D11−22(x) = 0, respectively. Thus the region for Cluster
11, where D11(x) > 0, is {x |D11−21(x) > 0, D11−22(x) > 0}. Likewise, the re-
gion for Cluster 12, where D12(x) > 0, is {x |D12−21(x) > 0, D12−22(x) > 0}.
These regions are disjoint, and if x is in any of the regions, it is classified into
Class 1. On the other hand, as seen from the figure, the regions for Clusters
21 and 22 are overlapped.

Similar to pairwise support vector machines, unclassifiable regions that
may appear using discrete decision functions are resolved using the continuous
decision functions given by (3.40). But in this example, unclassifiable regions
do not exist, even if we use discrete decision functions.

3.2.5 Decision-Tree-Based Support Vector Machines

Similar to decision-tree-based support vector machines discussed for
one-against-all formulation, we can formulate decision-tree-based support vec-
tor machines for pairwise classification [103, 134, 192, 194]. In this section, we
discuss two types of decision-tree-based support vector machines and then we
discuss how to optimize structures of decision trees [242].

3.2 Pairwise Support Vector Machines 103

Cluster 11

D12-22(x) = 0

D11-22(x) = 0

D11-21(x) = 0

0 x1

x2

Cluster 12

Cluster 21

Cluster 22

D12-21(x) = 0

Fig. 3.8. Decision boundaries by cluster-based classification

Decision Directed Acyclic Graph Support Vector Machines

To resolve unclassifiable regions for pairwise support vector machines, Platt,
Cristianini, and Shawe-Taylor [192] proposed decision-tree-based pairwise sup-
port vector machines called decision directed acyclic graph (DDAG) support
vector machines. In the following we call them DDAGs for short. Figure 3.9
shows the decision tree for the three classes shown in Fig. 3.6. In the figure, i
shows that x does not belong to class i. As the top-level classification, we can
choose any pair of classes. And except for the leaf node if Dij(x) > 0, we con-
sider that x does not belong to class j, and if Dij(x) < 0 not class i.1 Thus if
D12(x) > 0, x does not belong to Class 2. Thus it belongs to either Class 1 or
Class 3, and the next classification pair is Classes 1 and 3. The generalization
regions become as shown in Fig. 3.10. Unclassifiable regions are resolved, but
clearly the generalization regions depend on the tree formation.

Figure 3.11 shows a DDAG for four classes. At the top level, Classes 1 and
2 are selected. At the second level, Classes 1 and 4, and 2 and 3, which cover
all four classes, are selected. But we can select any pair from Classes 1, 3, and
4 at the left node and from 2, 3, and 4 at the right node. Thus we may select
Classes 3 and 4 for both nodes as shown in Fig. 3.12. This is an extension of
the DDAG originally defined.

Classification by an original DDAG is executed by list processing. Namely,
first we generate a list with class numbers as elements. Then we calculate the
decision function, for the input x, corresponding to the first and last elements.
Let these classes be i and j and Dij(x) > 0. We delete the element j from

1We may resolve the tie Dij(x) = 0 by Dij(x) ≥ 0.

104 3 Multiclass Support Vector Machines

Class 1 Class 3 Class 2

D32(x)D13(x)

D12(x)
-

--

2 1

-

-

3213
-

1
2
3

1
3

2
3

Fig. 3.9. Decision-tree-based pairwise classification

Class 1

Class 3
Class 2

D23(x) = 0

D13(x) = 0
D12(x) = 0

0 x1

x2

Fig. 3.10. Generalization region by decision-tree-based pairwise classification

the list. We repeat the procedure until one element is left. Then we classify
x into the class that corresponds to the element number. For Fig. 3.11, we
generate the list {1, 3, 4, 2}. If D12(x) > 0, we delete element 2 from the list;
we obtain {1, 3, 4}. Then if D14(x) > 0, we delete element 4 from the list;
{1, 3}. If D13(x) > 0, we delete element 3 from the list. Because only one
remains in the list, we classify x into Class 1.

Training of a DDAG is the same as conventional pairwise support vector
machines. Namely, we need to determine n (n− 1)/2 decision functions for an
n-class problem. The advantage of DDAGs is that classification is faster than
by conventional pairwise support vector machines or pairwise fuzzy support

3.2 Pairwise Support Vector Machines 105

Class 3Class 1 Class 4

D32(x)D14(x)

D12(x)

- -

-

2 1

D13(x) D42(x)D43(x)

-

-
-

-

-

231 4

2

3

34 1

4
--- -

Class 2

1
2
3
4

2
3
4

1
3
4

3
4

1
3

2
4

Fig. 3.11. A DDAG for four classes

Class 1Class 3 Class 4

D43(x)D34(x)

D12(x)

- -

-

2 1

D31(x) D23(x)D42(x)D14(x)

-

- -

- - -

-

323 414

3

1

44 3

2

Class 2 Class 3

1
2
3
4

2
3
4

1
3
4

1
3

1
4

2
3

2
4

Fig. 3.12. An extended DDAG equivalent to the ADAG shown in Fig. 3.13

106 3 Multiclass Support Vector Machines

vector machines. In a DDAG, classification can be done by calculating (n−1)
decision functions.

Adaptive Directed Acyclic Graphs

Pontil and Verri [194] proposed using rules of a tennis tournament to re-
solve unclassified regions. Not knowing their work, Kijsirikul and Ussivakul
[134] proposed the same method and called it adaptive directed acyclic graph
(ADAG). For three-class problems, the ADAG is equivalent to the DDAG.
Reconsider the example shown in Fig. 3.6. Let the first-round matches be
{Class 1, Class 2} and {Class 3}. Then for an input x, in the first match, x is
classified into Class 1 or Class 2, and in the second match x is classified into
Class 3. Then the second-round match is either {Class 1, Class 3} or {Class
2, Class 3} according to the outcome of the first-round match. The resulting
generalization regions for classes are the same as those shown in Fig. 3.10.
Thus for a three-class problem there are three different ADAGs, each having
an equivalent DDAG.

When there are more than three classes, the set of ADAGs is included in
the set of extended DDAGs. Consider a four-class problem and let the ADAG
be as shown in Fig. 3.13. Namely, the first round matches are {Class 1, Class
2} and {Class 3, Class 4}. An equivalent DDAG is shown in Fig. 3.12. The
order of matches {Class 1, Class 2} and {Class 3, Class 4} is irrelevant; namely,
they are independent. This can be realized in a DDAG by setting the match
{Class 1, Class 2} at all the nodes of one level and the match {Class 3, Class
4} at all the nodes of another level of the tree. Here, we set the match {Class
1, Class 2} at the top of the tree. Thus we set the match {Class 3, Class 4}
at the two nodes of the second level. The DDAG obtained by this method is
an extension of the original DDAG. In this way, for an ADAG including n
classes, we can generate an equivalent DDAG.

However, classification cannot be done by the list processing discussed
previously. Namely, for the list {1, 3, 4, 2} if D12(x) > 0, we delete element 2
and obtain {1, 3, 4}. Then we calculate D13(x), but this does not correspond
to Fig. 3.12.

Class 1 Class 2 Class 3 Class 4

Fig. 3.13. An ADAG for a four-class problem

3.2 Pairwise Support Vector Machines 107

Any ADAG can be converted to an equivalent DDAG, but the reverse
is not true for n ≥ 4. The DDAG shown in Fig. 3.11 cannot be converted
to an ADAG because the second-level decision functions are different and do
not constitute matches. But according to the computer simulations [134, 175],
classification performance of the two methods is almost identical.

Optimizing Decision Trees

Classification by DDAGs or ADAGs is faster than by pairwise fuzzy support
vector machines. But the problem is that the generalization ability depends
on the structure of decision trees. To solve this problem for ADAGs, in [189],
ADAGs are reordered so that the sum of ‖wij‖ associated with the leaf nodes
is minimized. Here we discuss optimizing structures of DDAGs and ADAGs
according to [241].

In DDAGs, the unclassifiable regions are assigned to the classes associated
with the leaf nodes [241]. By the DDAG for the three-class problem shown in
Fig. 3.9, the unclassifiable region is assigned to Class 3, as shown in Fig. 3.10,
which corresponds to the leaf node D32(x).

Suppose that the decision boundaries for a four-class problem are given
by Fig. 3.14. Then the unclassifiable regions by the conventional pairwise
support vector machine are as shown in Fig. 3.15. The shaded regions show
the unclassifiable regions, and the thick lines show class boundaries.

1
3

1
4

4

1 2 3 4

2

2
3

Fig. 3.14. Decision boundaries for a four-class problem. From [242, p. 124]

If the DDAG for the four-class problem is given by Fig. 3.11, the class
boundaries are as shown in Fig. 3.16. Region A in the figure is classified into
Class 3 by D34(x), which is at a leaf node of the DDAG.

Because any ADAG is converted into a DDAG, the preceding discussions
hold for ADAGs. Namely, the unclassifiable regions are assigned to the classes
associated with the leaf nodes of the equivalent DDAG.

108 3 Multiclass Support Vector Machines

1
3

1
4

4

1 2 3 4

2

2
3

1 2

3

4

Fig. 3.15. Unclassifiable regions for Fig. 3.14. From [242, p. 125]

1
3

1
4

4

1 2 3 4

2

2
3

1
2

3

4

A

Fig. 3.16. Class regions for Fig. 3.14 using the DDAG given by Fig. 3.11. From
[242, p. 125]

The unclassifiable regions caused by the conventional pairwise classifica-
tion are assigned to the classes associated with the leaf nodes of a DDAG.
Thus, if we put the class pairs that are easily separated in the upper nodes,
unclassifiable regions are assigned to the classes that are difficult to separate.
This means that the class pairs that are difficult to separate are classified by
the decision boundaries that are determined by these pairs.

In forming a DDAG or an ADAG, we need to train support vector machines
for all pairs of classes. Thus, to determine the optimal structure, we can
use any of the measures that are developed for estimating the generalization
ability (see Section 2.8.2).

Therefore, the algorithm to determine the DDAG structure for an n-class
problem is as follows:

3.2 Pairwise Support Vector Machines 109

1. Generate the initial list: {1, . . . , n}.
2. If there are no generated lists, terminate the algorithm. Otherwise, select

a list and select the class pair (i, j) with the highest generalization ability
from the list.

3. If the list selected at Step 2 has more than two elements, generate two
lists deleting i or j from the list. Go to Step 2.

Figure 3.17 shows an example of a four-class problem. First we generate the
list {1, 2, 3, 4}. At the top level we select a pair of classes that has the highest
generalization ability from Classes 1 to 4. Let them be Classes 1 and 2. Then
we generate the two lists {2, 3, 4} and {1, 3, 4}. We iterate this procedure for
the two lists.

1 vs 2
(1, 2, 3, 4)

(1, 3, 4) (2, 3, 4)3 vs 4 2 vs 3

1 2

Fig. 3.17. Determination of a DDAG for a four-class problem. From [242, p. 126]

This procedure determines the structure off-line. We can determine the
structure while classifying x as follows:

1. Generate the initial list: {1, . . . , n}.
2. Select the class pair (i, j) with the highest generalization ability from the

list. Let x be on the Class i side of the decision function. Delete j from
the list. Otherwise, delete i.

3. If the list selected at Step 2 has more than one element, go to Step 2. Oth-
erwise, classify x into the class associated with the element and terminate
the algorithm.

Because any ADAG is converted into an equivalent DDAG, we can deter-
mine the tree structure selecting class pairs with the highest generalization
ability. Figure 3.18 shows an example of an eight-class problem. At the first
level, we select the class pair with the highest generalization ability; let them
be Classes 1 and 4. We iterate the procedure for the remaining classes and let
the class pairs be Classes 6 and 7, 2 and 5, and 3 and 8. In the second level,
the pairs of classes are determined according to the input x. Let the candidate
classes be 1, 6, 5, and 3 for x. Then, we choose the pair of classes with the
highest generalization ability; let it be (1, 5). Then the remaining pair is (3,
6). We iterate the procedure until x is classified into a definite class.

110 3 Multiclass Support Vector Machines

1 vs 4 6 vs 7 2 vs 5 3 vs 8

1 vs 5 3 vs 6

1 6 5 3

(1, 3, 5, 6)

(1, 2, 3, 4, 5, 6, 7, 8)

Fig. 3.18. Determination of an ADAG for a four-class problem. From [242, p. 126]

Performance Evaluation

Because the generalization abilities of the ADAGs and DDAGs do not differ
very much, in the following we show only the results for DDAGs. As the mea-
sure for estimating the generalization ability, we evaluated the VC dimension
given by (2.260), the LOO error estimator given by (2.261), and Joachims’
ξ α LOO estimator given by (2.262), but there was not much difference [242].
Therefore, in the following we shows the results using the LOO error estima-
tor given by (2.261), namely the number of support vectors divided by the
number of training data.

We compared the maximum, minimum, and average recognition rates of
the test data for DDAGs and the recognition rate of the pairwise fuzzy sup-
port vector machine with minimum operators, using the data sets listed in
Table 1.1. We used the polynomial kernel with degree 3 and RBF kernel with
γ = 1. The input range was normalized into [0, 1]. We trained support vector
machines by the primal-dual interior-point method combined with the decom-
position technique. For the thyroid and MNIST data sets we set C = 10,000
and for other data sets C = 1000. We used an Athron MP 2000 personal
computer.

Table 3.4 shows the recognition rates of the test data for the conventional
pairwise support vector machine (SVM), pairwise fuzzy support vector ma-
chine (FSVM), and DDAGs. Column “OPT” lists the recognition rate for
the optimum DDAG. To compare the recognition rate of the DDAGs, the
maximum, minimum, and average recognition rates for the DDAGs are also
listed. In column “Kernel,” for instance, d3 denotes the polynomial kernel
with degree 3 and γ1 denotes the RBF kernel with γ = 1.

The number of DDAGs for a three-class problem is 3, but it explodes as
n increases. Thus, except for the iris and thyroid data, we randomly gen-
erated 10,000 DDAGs and calculated the maximum, minimum, and average
recognition rates of the test data.

3.2 Pairwise Support Vector Machines 111

From the table, for the iris data, all the recognition rates are the same; this
means that there are no test data in unclassifiable regions. The recognition
rate of the optimum DDAG is comparable to the average recognition rate of
DDAGs; in 9 cases out of 16, the recognition rates of the optimum DDAGs
are better than or equal to the average recognition rates.

The recognition rates of FSVMs are equal to or better than the average
recognition rates of DDAGs and comparable to the maximum recognition
rates of DDAGs.

Table 3.4. Performance of pairwise SVMs

Data Kernel SVM FSVM DDAG

Max. Min. Ave OPT

(%) (%) (%) (%) (%) (%)

Iris d3 93.33 93.33 93.33 93.33 93.33 93.33

γ1 97.33 97.33 97.33 97.33 97.33 97.33

Numeral d3 99.76 100 100 99.76 99.84 99.76

γ1 99.63 99.63 99.88 99.63 99.72 99.88

Thyroid d3 97.81 97.87 97.89 97.81 97.86 97.81

γ1 97.26 97.37 97.40 97.26 97.34 97.26

Blood cell d3 92.07 92.77 93.00 92.32 92.47 92.65

γ1 91.93 92.23 92.41 91.84 92.08 92.00

Hiragana-50 d3 98.57 98.89 99.37 98.52 98.75 98.61

γ1 98.37 98.85 99.22 98.29 98.56 98.50

Hiragana-105 d3 100 100 100 100 100 100

γ1 99.98 100 100 99.98 99.99 99.99

Hiragana-13 d3 99.63 99.66 99.72 99.58 99.64 99.66

γ1 99.61 99.65 99.70 99.55 99.60 99.63

MNIST d3 97.85 98.01 97.99 97.91 97.96 97.91

γ1 97.18 97.78 97.49 97.31 97.41 97.54

For pairwise classification, training time is the same for fuzzy SVMs and
DDAGs, but classification time of DDAGs is faster. Table 3.5 lists classifica-
tion time of the blood cell and hiragna-50 test data sets. DDAGs are much
faster than SVMs and FSVMs.

112 3 Multiclass Support Vector Machines

Table 3.5. Classification time comparison

Data Kernel DDAG SVM FSVM

(s) (s) (s)

Blood cell d3 0.9 1.2 2.4

γ1 0.7 2.6 5.2

Hiragana-50 d3 15 66 114

γ1 17 76 159

3.2.6 Pairwise Classification with Correcting Classifiers

In pairwise classification, let the classifier for classes i and j generate the
estimate of the probability that the input x belongs to class i, pij(x), where
pji(x) = 1 − pij(x). Then we can estimate the probability that x belongs to
class i, pi(x), by

pi(x) =
2

n (n − 1)

n∑
j �=i,
j=1

pij(x), (3.43)

where 2/(n (n − 1)) is to ensure
∑

i=1,...,n pi(x) = 1, and we can classify x
into

arg max
i

pi(x). (3.44)

This classification method is called pairwise coupling classification (Hastie and
Tibshirani [107]). Because pi(x) is continuous, unclassifiable regions do not
occur.

In pairwise coupling classification, pij(x) is estimated using the training
data belonging to classes i and j. Thus if x belongs to class k, a large value of
pij(x) or pji(x) (k �= i, j) may mislead classification. To avoid this situation,
Moreira and Mayoraz [169] introduced correcting classifiers. In addition to a
pairwise classifier that separates class i from class j, we generate a classifier
that separates classes i and j from the remaining classes. Let the output of
the classifier be qij(x), where qij(x) is the probability that x belongs to class
i or j. Then we calculate pi(x) by

pi(x) =
2

n (n − 1)

n∑
j �=i,
j=1

pij(x) qij(x). (3.45)

By multiplying pij(x) by qij(x), pi(x) is decreased when x does not belong to
class i. Thus the problem with pairwise coupling classification can be avoided.

According to the computer experiments [169], the generalization ability
of pairwise coupling with correcting classifiers was better than pairwise cou-
pling. In addition, if correcting classifiers alone were used as classifiers, their

3.3 Error-Correcting Output Codes 113

performance was comparable with that of pairwise coupling with correcting
classifiers.

In correcting classifiers, there are nC2 decision functions. For three-class
classification, separating two classes from the remaining class is equivalent
to separating one class from the remaining classes, namely one-against-all
classification. The target values for four classes are shown in a matrix form
as follows: ∣∣∣∣∣∣∣∣∣∣∣∣

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

−1 1 1 −1
−1 1 −1 1
−1 −1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.46)

where the ith row corresponds to the ith decision function and jth column,
class j. Each decision function has a complementary counterpart. For example,
the first and sixth rows are complementary. But for n > 4, each decision
function is distinct. Let the target value of class i for the jth decision function
be gij and the output of the jth decision function be Dj(x). Then input x is
classified into class

arg max
i

nC2∑
j=1

a(i, j), (3.47)

where

a(i, j) =
{

Dj(x) for gij = 1,
1 − Dj(x) for gij = −1. (3.48)

To apply pairwise coupling to support vector machines we need to calculate
pij(x). In [107], pij(x) and pji(x) are determined by approximating the normal
distributions in the direction orthogonal to the decision function. In [148], in
addition to training support vector machines, sigmoid functions are trained
[191] (see Section 4.7).

Pairwise coupling support vector machines and pairwise fuzzy support
vector machines do not differ very much, either posteriori probabilities or
degrees of membership are used. Thus, the idea of correcting classifiers can
be readily introduced to pairwise fuzzy support vector machines. But we need
to train correcting classifiers using all the training data. This leads to long
training times compared to pairwise classification.

3.3 Error-Correcting Output Codes

Error-correcting codes, which detect and correct errors in data transmission
channels, are used to encode classifier outputs to improve generalization abil-
ity. The codes are called error-correcting output codes (ECOCs). For support

114 3 Multiclass Support Vector Machines

vector machines, in addition to generalization improvement they can be used
to resolve unclassifiable regions. In this section, we first discuss how error-
correcting codes can be used for pattern classification. Next, by introducing
“don’t care” outputs, we discuss a unified scheme for output coding that
includes one-against-all and pairwise formulations. Then we show the equiva-
lence of the error-correcting codes with the membership functions. Finally, we
compare performance of ECOC support vector machines with one-against-all
support vector machines.

3.3.1 Output Coding by Error-Correcting Codes

Dietterich and Bakiri [73] proposed using error-correcting output codes for
multiclass problems. Let gij be the target value of the jth decision function
Dj(x) for class i (i = 1, . . . , n):

gij =
{

1 if Dj(x) > 0 for class i,
−1 otherwise.

(3.49)

The jth column vector gj = (g1j , . . . , gnj)T is the target vector for the jth
decision function. If all the elements of a column are 1 or −1, classification is
not performed by this decision function and two column vectors with gi = −gj

result in the same decision function. Thus the maximum number of distinct
decision functions is 2n−1 − 1.

The ith row vector (gi1, . . . , gik) corresponds to a code word for class i,
where k is the number of decision functions. In error-correcting codes, if the
minimum Hamming distance between pairs of code words is h, the code can
correct at least �(h−1)/2�-bit errors. For three-class problems, there are three
decision functions in maximum as shown in Table 3.6, which is equivalent to
one-against-all formulation, and there is no error-correcting capability. Thus
ECOC is considered to be a variant of one-against-all classification.

Table 3.6. Error-correcting codes for three classes (one-against-all)

Class g1 g2 g3

1 1 −1 −1

2 −1 1 −1

3 −1 −1 1

3.3.2 Unified Scheme for Output Coding

Introducing “don’t care” outputs, Allwein, Schapire, and Singer [14] unified
output codes that include one-against-all, pairwise, and ECOC schemes. De-

3.3 Error-Correcting Output Codes 115

noting a “don’t care” output by 0, pairwise classification for three classes can
be shown as in Table 3.7.

Table 3.7. Extended error-correcting codes for pairwise classification with three
classes

Class g1 g2 g3

1 1 0 −1

2 −1 1 0

3 0 −1 1

To calculate the distance of x from the jth decision function for class i,
we define the error εij(x) by

εij(x) =
{

0 for gij = 0,
max(1 − gijDj(x), 0) otherwise. (3.50)

If gij = 0, we need to skip this case. Thus, εij(x) = 0. If gijDj(x) ≥ 1, x is
on the correct side of the jth decision function with more than or the same
maximum margin. Thus, εij(x) = 0. If gijDj(x) < 1, x is on the wrong side
or even if it is on the correct side, the margin is smaller than the maximum
margin. We evaluate this disparity by 1 − gijDi(x).

Then the distance of x from class i is given by

di(x) =
k∑

j=1

εij(x). (3.51)

Using (3.51), x is classified into

arg min
i=1,...,n

di(x). (3.52)

Instead of (3.50), if we use the discrete function:

εij(x) =

{ 0 for gij = 0,
0 for gij = ±1, gijDi(x) ≥ 1,
1 otherwise;

(3.53)

(3.51) gives the Hamming distance. But by this formulation, as seen in Sec-
tions 3.1 and 3.2, unclassifiable regions occur.

3.3.3 Equivalence of ECOC with Membership Functions

Here we discuss the relationship between ECOC and membership functions.
For gij = ±1, the error εij(x) is expressed by the one-dimensional membership
functions mij(x):

116 3 Multiclass Support Vector Machines

mij(x) = min(gijDj(x), 1)
= 1 − εij(x). (3.54)

Thus, if we define the membership function for class i by

mi(x) =
1

k∑
j=1

|gij |

k∑
gij �=0,

j=1

mij(x) (3.55)

and classify x into
arg max

i=1,...,n
mi(x), (3.56)

we obtain the same recognition result as that by (3.52). This is equivalent to
a fuzzy support vector machine with average operators.

Similarly, if, instead of (3.51) we use

di(x) = max
j=1,...,n

εij(x), (3.57)

the resulting classifier is equivalent to a fuzzy support vector machine with
minimum operators.

According to the discussions in Section 3.1.3, one-against-all fuzzy support
vector machines with average and minimum operators give the same decision
boundaries. For pairwise classification, they are different, but according to
Section 3.2 the difference is small.

3.3.4 Performance Evaluation

We compared recognition performance of ECOC support vector machines
with one-against-all support vector machines using the blood cell data and
hiragana-50 data listed in Table 1.1 [135, 136]. As error-correcting codes we
used the BCH (Bose-Chaudhuri-Hochquenghem) codes, which belong to one
type of cyclic codes. We used four BCH codes with 15, 31, 63, and 127 word
lengths, properly setting the minimum Hamming distances. For each word
length we randomly assigned the class labels to generated codes 10 times, and
using the assigned codes we trained 10 ECOC support vector machines with
C = 5000.

Table 3.8 shows the results for the blood cell data with polynomial kernels
with degree 3. In the “Code” column, e.g., (15, 5, 7) means that the word
length is 15 bits, the number of information bits is 5, and the minimum Ham-
ming distance is 7. The “Hamming,” “Average,” and “Minimum” columns list
the average recognition rates of the test and the training data (in parentheses)
using the Hamming distance, the average operator, and the minimum oper-
ator, respectively. The numeral in boldface shows the maximum recognition
rate among the different codes.

3.3 Error-Correcting Output Codes 117

Table 3.8. Performance of blood cell data with polynomial kernels (d = 3)

Code Hamming Average Minimum

(%) (%) (%)

One-against-all 87.13 (92.41) 92.84 (96.09) 92.84 (96.09)

(15, 5, 7) 90.17 (93.34) 91.56 (94.45) 91.19 (93.95)

(31, 11, 11) 90.86 (93.60) 91.90 (94.59) 91.80 (94.16)

(63, 7, 31) 91.82 (94.64) 92.20 (94.98) 92.23 (94.32)

(127, 8, 63) 91.80 (94.58) 92.01 (94.82) 91.93 (96.09)

From the table, using the Hamming distance, the recognition rates of both
training and test data improved as the word length was increased, and they
reached the maximum at the word length of 63. But because by the Hamming
distance unclassifiable regions existed, the recognition rates were lower than
by average and minimum operators. By the average and minimum operators,
however, the one-against-all support vector machines showed the best recog-
nition rates. This may be caused by the lower recognition rates of the training
data by the ECOC support vector machines than by the one-against-all sup-
port vector machines.

Thus, to improve the recognition rate of the test data, we used the RBF
kernels. Table 3.9 shows the results for the RBF kernels with γ = 1. The
ECOC support vector machines showed better recognition performance than
the one-against-all support vector machines. In addition, the average operator
showed better recognition performance than the minimum operator.

Table 3.10 shows the results of the hiragana-50 data for the polynomial
kernels with degree 3. The ECOC support vector machine with the average
operator and the word length of 127 showed the best recognition performance.

Table 3.9. Performance of blood cell data with RBF kernels (γ = 1)

Code Hamming Average Minimum

(%) (%) (%)

One-against-all 86.68 (98.58) 92.94 (99.29) 92.94 (99.29)

(15, 5, 7) 92.43 (98.27) 93.47 (98.49) 93.07 (98.18)

(31, 11, 11) 92.88 (98.36) 93.85 (98.59) 93.53 (98.13)

(63, 10, 27) 93.68 (98.64) 94.05 (98.68) 93.75 (98.37)

(127, 15, 55) 93.68 (98.60) 93.96 (98.61) 93.63 (97.94)

118 3 Multiclass Support Vector Machines

Table 3.10. Performance of hiragana-50 data with polynomial kernels (d = 3)

Code Hamming Average Minimum

(%) (%) (%)

One-against-all 97.55 (100) 99.28 (100) 99.28 (100)

(15, 5, 7) 95.50 (99.96) 97.63 (99.85) 96.93 (99.97)

(31, 11, 11) 98.38 (99.99) 99.01 (100) 98.56 (99.97)

(63, 7, 31) 99.01 (100) 99.30 (100) 99.17 (99.97)

(127, 8, 63) 99.31 (100) 99.46 (100) 99.26 (99.97)

But some ECOC support vector machines showed lower recognition perfor-
mance than the one-against-all support vector machine. Thus the performance
of ECOC support vector machines was not stable.

From the preceding computer experiments, it is shown that ECOC support
vector machines do not always perform better than one-against-all support
vector machines. Thus, to obtain good recognition performance, we need to
optimize the structure of ECOC support vector machines. To do this, Pérez-
Cruz and Artés-Rodŕiguez [186] proposed an iterative pruning of worst clas-
sifier from redundant classifiers.

3.4 All-at-Once Support Vector Machines

In this section, we resolve unclassifiable regions of multiclass problems by de-
termining all the decision functions simultaneously [20, 29, 36, 40, 65, 100,
257, 269, 270]. In [77, pp. 174–6], a multiclass problem is converted into a
two-class problem by expanding the m-dimensional input data into (m × n)-
dimensional data.2 Here, we do not use this method. We discuss two meth-
ods: the basic architecture that uses (M × n) slack variables [257] and the
sophisticated architecture that uses M slack variables [65].

3.4.1 Basic Architecture

For an n-class problem, we define the decision function for class i by

wT
i g(x) + bi > wT

j g(x) + bj for j �= i, j = 1, . . . , n, (3.58)

where wi is the weight vector for class i in the feature space, g(x) is the
mapping function, and bi is the bias term.

The L1 soft-margin support vector machine can be obtained by minimizing
2A similar method is discussed in [19].

3.4 All-at-Once Support Vector Machines 119

Q(w,b, ξ) =
1
2

n∑
i=1

‖wi‖2 + C

M∑
i = 1

n∑
j �=yi,
j=1

ξij (3.59)

subject to the constraints

(wyi
− wj)T g(xi) + byi

− bj ≥ 1 − ξij

for j �= yi, j = 1, . . . , n, i = 1, . . . , M, (3.60)

where yi (∈ {1, . . . , n}) is the class label for xi, C is the margin parame-
ter that determines the trade-off between the maximization of the margin
and minimization of the classification error, ξij (> 0) is the slack variable as-
sociated with xi and class j, ξ = (. . . , ξij , . . .)T , w = (w1, . . . ,wn)T , and
b = (b1, . . . , bn)T .

Introducing the nonnegative Lagrange multipliers αij and βij , we obtain

Q(w,b, ξ,α,β) =
1
2

n∑
i=1

‖wi‖2 + C

M∑
i = 1

n∑
j �=yi,
j=1

ξij

−
M∑

i = 1

n∑
j �=yi,
j=1

αij

(
(wyi

− wj)T g(xi) + byi
− bj − 1 + ξij

)

−
M∑

i = 1

n∑
j �=yi,
j=1

βij ξij

=
1
2

n∑
i=1

‖wi‖2 −
M∑

i = 1

n∑
j=1

zij

(
wT

j g(xi) + bj − 1
)

−
M∑

i = 1

n∑
j �=yi,
j=1

(αij + βij − C) ξij , (3.61)

where

zij =

⎧⎪⎨
⎪⎩

n∑
k �=yi,
k=1

αik for j = yi,

−αij otherwise.

(3.62)

The conditions of optimality are given by

∂Q(w,b, ξ,α,β)
∂b

= 0, (3.63)

∂Q(w,b, ξ,α,β)
∂w

= 0, (3.64)

∂Q(w,b, ξ,α,β)
∂ξ

= 0, (3.65)

120 3 Multiclass Support Vector Machines

αij

(
(wyi

− wj)T g(xi) + byi
− bj − 1 + ξij

)
= 0

for j �= yi, j = 1, . . . , n, i = 1, . . . , M, (3.66)
βij ξij = 0 for j �= yi, j = 1, . . . , n, i = 1, . . . , M, (3.67)

where (3.66) and (3.67) are the KKT (complementarity) conditions.
Using (3.61), (3.63) to (3.65) reduce, respectively, to

M∑
i = 1

zij = 0 for j = 1, . . . , n, (3.68)

wj =
M∑

i = 1

zij g(xi) for j = 1, . . . , n, (3.69)

αij + βij = C, αij ≥ 0, βij ≥ 0
for i = 1, . . . , M, j �= yi, j = 1, . . . , n. (3.70)

Thus we obtain the following dual problem. Maximize

Q(α) =
M∑

i = 1

∑
j �=yi,
j=1

αij − 1
2

M∑
i,k=1

n∑
j=1

zij zkj H(xi,xj) (3.71)

subject to the constraints

M∑
i = 1

zij = 0 for j �= yi, j = 1, . . . , n, (3.72)

0 ≤ αij ≤ C for i = 1, . . . , M, j �= yi, j = 1, . . . , n. (3.73)

The decision function is given by

Di(x) =
M∑

j = 1

zji H(xj ,x) + bi. (3.74)

Because αji are nonzero for the support vectors, the summation in (3.74)
is added only for nonzero zji.

Then the datum x is classified into the class

arg max
i=1,...,n

Di(x). (3.75)

If the maximum is reached for plural classes, the datum is on the class bound-
ary and is unclassifiable.

3.4.2 Sophisticated Architecture

Crammer and Singer [65] proposed replacing the slack variables ξij with ξi =
maxj ξij . Because the bias term is not included in the original formulation,
we restate their formulation according to [114, 154].

3.4 All-at-Once Support Vector Machines 121

We minimize

1
2

n∑
j=1

‖wj‖2 + C

M∑
i = 1

ξi (3.76)

subject to the constraints

(wyi − wj)T g(xi) + byi
− bj ≥ 1 − ξi

for j �= yi, j = 1, . . . , n, i = 1, . . . , M. (3.77)

Introducing the nonnegative Lagrange multipliers αi and βi, we obtain

Q(w,b, ξ,α,β) =
1
2

n∑
j=1

‖wj‖2 + C

M∑
i = 1

ξi

−
M∑

i = 1

n∑
j �=yi,
j = 1

αi

(
(wyi

− wj)T g(xi) + byi
− bj − 1 + ξi

)

−
M∑

i = 1

βi ξi

=
1
2

n∑
j=1

‖wj‖2 −
M∑

i = 1

n∑
j = 1

zj
i αi

(
wT

j g(xi) + bj

)

+
M∑

i = 1

(C ξi − (n − 1) αi (−1 + ξi) − βi ξi) , (3.78)

where
zj

i =
{

n − 1 for j = yi,
−1 otherwise.

(3.79)

The conditions of optimality are given by

∂Q(w,b, ξ,α,β)
∂b

= 0, (3.80)

∂Q(w,b, ξ,α,β)
∂w

= 0, (3.81)

∂Q(w,b, ξ,α,β)
∂ξ

= 0, (3.82)

αi

(
(wyi

− wj)T g(xi) + byi
− bj − 1 + ξi

)
= 0

for j �= yi, j = 1, . . . , n, i = 1, . . . , M, (3.83)
βi ξi = 0 for j �= yi, j = 1, . . . , n, i = 1, . . . , M, (3.84)

where (3.83) and (3.84) are the KKT complementarity conditions.
Using (3.78), (3.80) to (3.82) reduce, respectively, to

122 3 Multiclass Support Vector Machines

M∑
i = 1

zj
i αi = 0 for j = 1, . . . , n, (3.85)

wj =
M∑

i = 1

zj
i αi g(xi) for j = 1, . . . , n, (3.86)

(n − 1) αi + βi = C, αi ≥ 0, βi ≥ 0 for i = 1, . . . , M. (3.87)

Thus we obtain the following dual problem. Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,k=1

n∑
j=1

zj
i zj

k αi αk H(xi,xj) (3.88)

subject to the constraints

M∑
i = 1

zj
i αi = 0 for j = 1, . . . , n, (3.89)

0 ≤ (n − 1) αi ≤ C for i = 1, . . . , M. (3.90)

The decision function is given by

Di(x) =
M∑

j = 1

zj
i αi H(xj ,x) + bi. (3.91)

Datum x is classified into the class

arg max
i=1,...,n

Di(x). (3.92)

3.5 Comparisons of Architectures

We have discussed four types of support vector machines: one-against-all,
pairwise, ECOC, and all-at-once support vector machines. In this section we
summarize their characteristics and compare their trainability.

3.5.1 One-against-All Support Vector Machines

To resolve unclassifiable regions of the original one-against-all support vector
machines with discrete decision functions, the following extensions have been
discussed in this chapter:

1. Support vector machines with continuous decision functions.
2. Fuzzy support vector machines with minimum and average operators are

proved to be equivalent to support vector machines with continuous deci-
sion functions.

3.5 Comparisons of Architectures 123

3. Decision-tree-based support vector machines. Training of the preceding
two types of support vector machines is the same as of support vector
machines with discrete decision functions. But for an n-class problem, be-
cause a decision-tree-based support vector machine determines n − 1 de-
cision functions using smaller numbers of training data, training is faster.

For the data sets tested, an improvement of generalization ability of the sup-
port vector machines over support vector machines with discrete decision func-
tions was large.

3.5.2 Pairwise Support Vector Machines

By pairwise support vector machines unclassifiable regions are reduced but
they still exist. Thus to resolve unclassifiable regions the following extensions
have been discussed:

1. Fuzzy support vector machines with minimum and average operators. The
improvement by introducing the membership functions was smaller than
for one-against-all support vector machines because the size of unclas-
sifiable regions is smaller. In addition, there is not much difference of
recognition rates using minimum and average operators.

2. Decision-tree-based support vector machines: decision directed acyclic
graphs (DDAGs) and adaptive directed acyclic graphs (ADAGs). DDAGs
are more general than ADAGs but the difference of generalization ability
is very small. The generalization ability of fuzzy support vector machines
is better than the average generalization ability of DDAGs and ADAGs,
but the difference is small for the tested data sets. DDAGs and ADAGs
are suited for the problem where high-speed classification is necessary.
Optimization of DDAGs and ADAGs was discussed, and the recognition
rates of the optimized DDAGs were comparable or better than the average
recognition rates of DDAGs.

3.5.3 ECOC Support Vector Machines

Error-correcting output codes are introduced to improve generalization ability
of support vector machines. By ECOC, resolution of unclassifiable regions is
also achieved. ECOC support vector machines are equivalent to fuzzy support
vector machines with average operators.

ECOC support vector machines are an extension of one-against-all support
vector machines and by introducing “don’t care” outputs, any classification
scheme including pairwise classification can be realized.

According to the performance evaluation, ECOC support vector machines
did not always outperform one-against-all fuzzy support vector machines, and
there was an optimal code word length. Thus, optimization of ECOC struc-
tures is necessary.

124 3 Multiclass Support Vector Machines

3.5.4 All-at-Once Support Vector Machines

By determining all the decision functions at once, unclassifiable regions are
resolved. But by the original formulation the number of variables is M×(n−1),
where M is the number of training data and n is the number of classes. Thus
training becomes difficult as the number of training data becomes large. This
problem was overcome by the new formulation of all-at-once support vector
machines in which the number of variables is reduced to M .

3.5.5 Training Difficulty

Table 3.11 summarizes the characteristics of four types of support vector ma-
chines from the number of decision functions to be determined for n class
problems, the number of variables solved simultaneously for the M training
data, and the number of equalities in the dual optimization problem. In the
table, Mi is the number of training data belonging to class i and k is the
length of code words.

Table 3.11. Comparison of support vector machines

One-against-all Pairwise ECOC All-at-once

Decision functions n n(n − 1)/2 k n

Variables M Mi + Mj M M

Equalities 1 1 1 n

In the following we discuss the difference of support vector machines from
the standpoint of separability. We say that training data are separable by
a support vector machine if each decision function for the support vector
machine separates training data in the feature space. This means that training
data are separated correctly 100 percent by the support vector machine.

Example 3.2. Consider a one-dimensional case shown in Fig. 3.19, where Class
1 is in (a, b), Class 2 is in (−∞, a), and Class 3 is in (b, ∞). We consider linear
decision functions for three classes [252].

Because Class 1 is not separated from Classes 2 and 3 by a linear decision
function, the problem is not separable by one-against-all formulation. But by
pairwise formulation, by setting

g12(x) = x − a, (3.93)
g13(x) = −x + b, (3.94)
g23(x) = −x + c, (3.95)

3.5 Comparisons of Architectures 125

x

y

0

Class 2 Class 3

g1(x)

g3(x)

g2(x)

Class 1

a b

Fig. 3.19. Class boundaries for a one-dimensional case by all-at-once formulation

where b > c > a, the problem is separable.
By all-at-once formulation, the problem is also separable. Figure 3.19

shows an example of gi(x). Because g1(x) > g2(x) and g1(x) > g3(x) in
the interval (a, b), the data in this interval are classified into Class 1.

Therefore, the separation power of one-against-all formulation is lower
than pairwise or all-at-once formulation.

Theorem 3.3. If training data are separable by a one-against-all support vec-
tor machine, the training data are separable by a pairwise support vector ma-
chine. But the reverse is not always true.

Proof. Suppose for an n-class problem, training data are separable by a one-
against-all support vector machine. Then class i is separated from the set of
classes {j | j �= i, j = 1, . . . , n}. This means that class i is separated from class
j (j �= i, j = 1, . . . , n). Therefore, any pair of classes i and j is separable in
the feature space.

We prove that the reverse does not hold by a counterexample. Example
3.2 shows one counterexample, but here we consider a three-class case shown
in Fig. 3.20, where each pair of classes is separated linearly. Thus the training
data are separable by a pairwise support vector machine. But as shown in Fig.
3.21, the training data are not separable by a one-against-all support vector
machine. Thus the reverse is not always true. �

Theorem 3.3 tells us that for the given kernel, training data are more diffi-
cult to separate by one-against-all support vector machines than by pairwise

126 3 Multiclass Support Vector Machines

Class 1

Class 3

Class 2

0 x1

x2

Fig. 3.20. Class boundaries by a pairwise support vector machine

Class 1

Class 3

Class 2

0 x1

x2

Fig. 3.21. Class boundaries by a one-against-all support vector machine

support vector machines. In addition, for one-against-all support vector ma-
chines, the number of training data for determining a decision function is the
total number of training data compared to the sum of two-class training data
for pairwise support vector machines. Thus, training of a one-against-all sup-
port vector machine is more difficult than that of a pairwise support vector
machine.

Theorem 3.4. If training data are separable by an ECOC support vector ma-
chine, the training data are separable by a pairwise support vector machine.
But the reverse is not always true.

3.5 Comparisons of Architectures 127

Proof. Suppose for an n-class problem, training data are separable by an
ECOC support vector machine. Then for the kth decision function a set of
classes L1 is separated from a set of classes L2, where L1 ∩ L2 = {1, . . . , n}.
Thus any class in L1 is separated from any class in L2. Assume that there is
a pair of classes i and j that are not separable. This means that classes i and
j are on the same sides of all the decision functions. This does not happen
because the ECOC does not classify classes i and j.

Because ECOC support vector machines are an extension of one-against-
all support vector machines, the reverse is not always true. �

Now compare one-against-all and all-at-once support vector machines
when a classification problem is separable by the one-against-all support vec-
tor machine. In the one-against-all support vector machine, the decision func-
tion for class i is determined so that Di(x) > 1 for x belonging to class i
and Di(x) < −1, otherwise. But by classification using continuous decision
functions or fuzzy membership functions, if

Di(x) > Dj(x) for j �= i, j = 1, . . . , n, (3.96)

x is classified into class i. Equation (3.96) is the same constraint as that of
the all-at-once support vector machine. Thus it is estimated that the deci-
sion boundaries obtained by one-against-all and all-at-once support vector
machines are quite similar (compare the decision boundaries in Figs. 3.21 and
3.22).

As shown in Figs. 3.20 and 3.22, for three classes, training data that are
separable by an all-at-once support vector machine are separable by a pairwise
support vector machine, and vice versa. But in general, separation of a smaller
number of data with a smaller number of constraints is easier than that by
a larger number of data. Thus, training data are more separable by pairwise
support vector machines than by all-at-once support vector machines.

Considering the fact that an all-at-once support vector machine has similar
decision functions with a one-against-all support vector machine, and that its
training is more difficult, an all-at-once support vector machine should be a
last choice as a classifier.

3.5.6 Training Time Comparison

We evaluated the training time of support vector machines using the data sets
listed in Table 1.1. We solved the optimization problem repeatedly, adding 200
data for the MNIST data set and 50 data except for the set at a time. We used
the primal-dual interior-point method [254] combined with the decomposition
technique to solve the quadratic programming problem. We set the value of
the margin parameter C to 5000. We used an Athlon (1GHz) computer for
the MNIST data set and a Pentium III (933MHz) computer for the other data
sets.

128 3 Multiclass Support Vector Machines

Class 1

Class 3

Class 2

0 x1

x2

Fig. 3.22. Class boundaries by an all-at-once support vector machine

Table 3.12 shows the training time for one-against-all and pairwise sup-
port vector machines. For the hiragana-105 data with 38 classes, 703 decision
functions need to be determined for pairwise classification, but training a pair-
wise support vector machine is 6 times faster than training a one-against-all
support vector machine. For the data sets tried, training speedup by pairwise
classification is 3 to 9.

Table 3.12. Training time comparison

Data Kernel One-against-all Pairwise Ratio

(s) (s)

Thyroid d4 44 5 8.8

Blood cell d4 32 5 6.4

Hiragana-50 d2 128 40 3.2

Hiragana-105 d2 600 98 6.1

Hiragana-13 d2 271 43 6.3

MNIST d3 3153 554 5.7

4

Variants of Support Vector Machines

Since the introduction of support vector machines, numerous variants have
been developed. In this chapter, we discuss some of them: least squares support
vector machines, linear programming support vector machines, robust support
vector machines, Bayesian support vector machines, and committee machines.
We also discuss incremental training, introduction of confidence level, and
visualization of support vector machines.

4.1 Least Squares Support Vector Machines

Suykens et al. [23, 234, 236] proposed least squares (LS) support vector ma-
chines for two-class problems, in which the inequality constraints in L2 soft-
margin support vector machines are converted into equality constraints. The
training of the LS support vector machine is done by solving a set of linear
equations, instead of a quadratic programming problem.

We can extend the two-class LS support vector machines to multiclass
LS support vector machines [234, 238] in a way similar to that of support
vector machines. In [162], the effect of coding methods for multiclass classifi-
cation on generalization ability was evaluated by computer simulations. Three
coding methods—one-against-all classification, a variant of pairwise classifica-
tion, i.e., correcting classification, and classification based on error-correcting
output codes were tested for two benchmark data sets and the last two out-
performed the first one.

In the following, we first discuss two-class LS support vector machines.
Then we discuss one-against-all, pairwise, and all-at-once LS support vec-
tor machines, and finally we compare their classification and training perfor-
mance.

4.1.1 Two-Class Least Squares Support Vector Machines

The LS support vector machine is trained by minimizing

130 4 Variants of Support Vector Machines

1
2

wT w +
C

2

M∑
i=1

ξ2
i (4.1)

subject to the equality constraints:1

yi (wT g(xi) + b) = 1 − ξi for i = 1, . . . , M, (4.2)

where yi = 1 and −1 if xi belongs to Classes 1 and 2, respectively, w is the
l-dimensional vector, b is the bias term, g(x) is the l-dimensional vector that
maps m-dimensional vector x into the feature space, ξi is the slack variable
for xi, and C is the margin parameter. Here, if ξi ≥ 1, xi is misclassified and
if ξi < 1, xi is correctly classified. If 1 > ξi > 0, xi is correctly classified but
with a smaller margin. Unlike conventional support vector machines, ξi can
be negative.

Introducing the Lagrange multipliers αi into (4.1) and (4.2), we obtain the
unconstrained objective function:

Q(w, b,α, ξ)

=
1
2

wT w +
C

2

M∑
i=1

ξ2
i −

M∑
i=1

αi {yi (wT g(xi) + b) − 1 + ξi}, (4.3)

where α = (α1, . . . , αM)T and ξ = (ξ1, . . . , ξM)T .
Taking the partial derivatives of (4.3) with respect to w, b, and ξ and

equating them to zero, together with the equality constraint (4.2), we obtain
the optimal conditions as follows:

w =
M∑
i=1

αi yi g(xi), (4.4)

M∑
i=1

αi yi = 0, (4.5)

αi = C ξi for i = 1, . . . , M, (4.6)
yi

(
wT g(xi) + b

)− 1 + ξi = 0 for i = 1, . . . , M. (4.7)

From (4.6), unlike conventional support vector machines, αi can be negative.
Substituting (4.4) and (4.6) into (4.7) and expressing it and (4.5) in matrix

form, we obtain (
Ω y
yT 0

)(
α
b

)
=
(

1
0

)
, (4.8)

or

1Multiplying yi to both sides of (4.2), we obtain yi − wT g(xi) − b = yi ξi.
Because ξi takes either a positive or a negative value and (yi ξi)2 = ξ2

i , we can use
yi − wT g(xi) − b = ξi instead of (4.2).

4.1 Least Squares Support Vector Machines 131

Ωα + yb = 1, (4.9)
yT α = 0, (4.10)

where 1 is the M -dimensional vector and

Ωij = yi yj gT (xi)g(xj) +
δij

C
, (4.11)

δij =
{

1 i = j,
0 i �= j, (4.12)

y = (y1, . . . , yM)T , (4.13)
1 = (1, . . . , 1)T . (4.14)

Like the support vector machine, setting H(x,x′) = gT (x)g(x′), we can avoid
the explicit treatment of variables in the feature space.

The original minimization problem is solved by solving (4.8) for α and b as
follows. Because of 1/C (> 0) in the diagonal elements, Ω is positive definite.
Therefore,

α = Ω−1(1 − y b). (4.15)

Substituting (4.15) into (4.10), we obtain

b = (yT Ω−1y)−1yT Ω−11. (4.16)

Thus, substituting (4.16) into (4.15), we obtain α.
By changing the inequality constraints into the equality constraints, train-

ing of support vector machines reduces to solving a set of linear equations
instead of a quadratic programming problem. But by this formulation, spar-
sity of α is not guaranteed. To avoid this, Suykens et al. [234, 235] proposed
pruning the data whose associated αi have small absolute values. Namely,
first we solve (4.8) using all the training data. Next, we sort αi according
to their absolute values and delete a portion of the training data set (say 5
percent of the set) starting from the data with the minimum absolute value
in order. Then we solve (4.8) using the reduced training data set and iterate
this procedure while the user-defined performance index is not degraded.

Cawley and Talbot [54] proposed a greedy algorithm. By assuming that
the weight vector is approximated by

w =
∑
i∈S

αi yi g(xi), (4.17)

where S ⊂ {1, . . . , M}, (4.1) becomes

1
2

∑
i,j∈S

αi αj yi yj H(xi,xj)

+
C

2

M∑
i=1

⎛
⎝∑

j∈S

yi (yj αj H(xi,xj) + b) − 1

⎞
⎠

2

. (4.18)

132 4 Variants of Support Vector Machines

Then starting with only a bias term, i.e., S = ∅, the training pattern that
minimizes the objective function (4.18) is added to S until some convergence
test is satisfied.

For the original LS support vector machine, all the training data become
support vectors. Thus, classification becomes slow for a large problem. For
linear kernels, calculating w once and saving it, we can avoid this problem
[252]. Unfortunately, as discussed in Section 2.6.5, a similar method is not
applicable to nonlinear kernels.

4.1.2 One-against-All Least Squares Support Vector Machines

For a one-against-all LS support vector machine, we determine n decision
functions that separate one class from the remaining classes. The ith decision
function,

Di(x) = wT
i g(x) + bi, (4.19)

separates class i from the remaining classes with the maximum margin, where
wi is the l-dimensional weight vector and bi is the bias term.

The hyperplane Di(x) = 0 forms the optimal separating hyperplane and
if the classification problem is separable, the training data belonging to class
i satisfy Di(x) ≥ 1, and those belonging to the remaining classes satisfy
Di(x) ≤ −1.

In classification, if for the input vector x

Di(x) > 0 (4.20)

is satisfied for one i, x is classified into class i. Because only the sign of the
decision function is used, the decision is discrete.

If (4.20) is satisfied for plural is, or if there is no i that satisfies (4.20), x
is unclassifiable.

To avoid this, instead of the discrete decision functions, continuous decision
functions can be used. Namely, datum x is classified into the class

arg max
i=1,...,n

Di(x). (4.21)

Another way of resolving unclassifiable regions is to introduce membership
functions. For class i we define one-dimensional membership functions mij(x)
in the directions orthogonal to the optimal separating hyperplanes Dj(x) = 0
as follows:

1. For i = j

mii(x) =
{

1 for Di(x) ≥ 1,
Di(x) otherwise. (4.22)

2. For i �= j

mij(x) =
{

1 for Dj(x) ≤ −1,
−Dj(x) otherwise. (4.23)

4.1 Least Squares Support Vector Machines 133

For i �= j, class i is on the negative side of Dj(x) = 0.
We define the class i membership function of x by the minimum operation

for mij(x) (j = 1, . . . , n),

mi(x) = min
j=1,...,n

mij(x), (4.24)

or the average operation,

mi(x) =
1
n

∑
j=1,...,n

mij(x). (4.25)

The datum x is classified into the class

arg max
i=1,...,n

mi(x). (4.26)

In Section 3.1.3, one-against-all support vector machines with continuous
decision functions and one-against-all fuzzy support vector machines with
minimum or average operators are proved to be equivalent. This also holds
for LS support vector machines.

4.1.3 Pairwise Least Squares Support Vector Machines

In pairwise classifications, unclassifiable regions exist. Thus, similar to Sec-
tion 3.2.2, we introduce fuzzy membership functions to resolve unclassifiable
regions in pairwise classification [250, 251].

In pairwise classification we require a binary classifier for each possible
pair of classes and the number of the total pairs is n (n − 1)/2 for an n-class
problem. The decision function for the pair of classes i and j is given by

Dij(x) = wT
ij g(x) + bij , (4.27)

where wij is the l-dimensional weight vector, g(x) maps x into the l-dimen-
sional feature space, bij is the bias term, and Dij(x) = −Dji(x). Then for
datum x we calculate

Di(x) =
n∑

j �=i,j=1

sign(Dij(x)), (4.28)

where

sign(a) =
{

1 a ≥ 0,
−1 otherwise,

and this datum is classified into the class

arg max
i=1,...,n

Di(x). (4.29)

134 4 Variants of Support Vector Machines

If (4.29) is satisfied for one i, x is classified into class i. But if (4.29) is satisfied
for plural is, x is unclassifiable.

To avoid this, we introduce membership functions. First, we define the
one-dimensional membership function, mij(x), in the direction orthogonal to
the optimal separating hyperplane Dij(x) as follows:

mij =
{

1 for Dij(x) ≥ 1,
Dij(x) otherwise. (4.30)

Here, we allow a negative degree of membership to make any data except
those on the decision boundary be classified.

Using the minimum operator the membership function, mi(x), of x for
class i is given by

mi(x) = min
j=1,...,n

mij(x). (4.31)

The shape of the resulting membership function is a truncated polyhedral
pyramid in the feature space, and the contour surface, in which the degree of
membership is the same, is parallel to the decision function.

Using the average operator the membership function, mi(x), of x for class
i is given by

mi(x) =
1

n − 1

n∑
j �=i,j=1

mij(x). (4.32)

The shape of the resulting membership function is a truncated polyhedral
pyramid but some part of the contour surface is not parallel to the decision
function.

Using either (4.31) or (4.32), datum x is classified into the class

arg max
i=1,...,n

mi(x). (4.33)

Comparing the minimum and average operators, the regions where mi(x) =
1 are the same, but the regions where mi(x) < 1 are different. We can show
that the decision boundaries with the minimum operator are the same as
those given by (4.28) for classifiable regions but the decision boundaries for
the average operator are not. Thus the recognition rate using the minimum
operator is always better than or equal to that by the conventional pairwise
LS support vector machine. But this does not hold for the average operator.

4.1.4 All-at-Once Least Squares Support Vector Machines

Similar to all-at-once support vector machines discussed in Section 3.4, we
can define all-at-once LS support vector machines.

To obtain the maximum margin classifier, we minimize

1
2

n∑
j=1

‖wj‖2 +
C

2

M∑
i = 1

n∑
j �=yi,
j=1

ξ2
ij (4.34)

4.1 Least Squares Support Vector Machines 135

subject to the equality constraints

(wyi
− wj)T g(xi) + byi

− bj = 1 − ξij

for j �= yi, j = 1, . . . , n, i = 1, . . . , M, (4.35)

where wj is the l-dimensional weight vector for class j, bj is the bias term for
class j, ξij are slack variables associated with xi and class j, yi (∈ {1, . . . , n})
is the class label for xi, and C is the margin parameter that determines
the trade-off between the maximization of the margin and minimization of
the classification error. Unlike all-at-once support vector machines discussed
in Section 3.4.2, because of the equality constraints, we cannot reduce slack
variables from ξij to ξi.

Introducing the Lagrange multipliers αij , we obtain

Q(w,b, ξ,α,β) =
1
2

n∑
j=1

‖wj‖2 +
C

2

M∑
i = 1

n∑
j �=yi,
j=1

ξ2
ij

−
M∑

i = 1

n∑
j �=yi,
j=1

αij

(
(wyi

− wj)T g(xi) + byi − bj − 1 + ξij

)
. (4.36)

Taking the partial derivatives of (4.36) with respect to wj , bj , αij , and ξij

and equating them to zero, we obtain the optimal conditions as follows:

wj =
M∑

i = 1

zij g(xi) for j = 1, . . . , n, (4.37)

M∑
i = 1

zij = 0 for j = 1, . . . , n, (4.38)

αij = Cξij , αij ≥ 0
for i = 1, . . . , M, j �= yi, j = 1, . . . , n, (4.39)

(wyi
− wj)T g(xi) + byi

− bj − 1 + ξij = 0
for i = 1, . . . , M, j �= yi, j = 1, . . . , n, (4.40)

where

zij =

⎧⎪⎨
⎪⎩

n∑
k �=yi,
k=1

αik for j = yi,

−αij otherwise.

(4.41)

Similar to a two-class problem, substituting (4.37) and (4.39) into (4.40), we
can solve the resulting equation and (4.38) for αij and bi.

The decision function for class i is given by

Di(x) =
M∑

j = 1

zji gT (xj)g(x) + bi. (4.42)

136 4 Variants of Support Vector Machines

As usual, to avoid explicit treatment of variables in the feature space, we
use kernel tricks: H(x,x′) = gT (xj)g(x).

4.1.5 Performance Comparison

Condition of Experiments

Using the data sets listed in Table 1.1, we compared the performance of the
fuzzy one-against-all LS support vector machine (LS SVM), the fuzzy pairwise
LS SVM with minimum and average operators, and the all-at-once LS SVM.
Each input variable was scaled into [0, 1].

Among linear kernels, polynomial kernels with degree 2, 3, and 4, and RBF
kernels with γ = 0.1, 1, and 10 we selected the optimum kernel and the value
of C from 1 to 100,000 by five-fold cross-validation. The simulations were done
on an AthlonMP 2GHz personal computer.

Classification Performance

Table 4.1 shows the recognition performance of the fuzzy one-against-all LS
SVM, the fuzzy pairwise LS SVMs with minimum and average operators, and
all-at-once LS SVM. The “Parm” rows list the kernel types and parameters
and the values of C optimized by the five-fold cross-validation. The “Min”
and “Avg.” rows show the recognition rates with the decision functions with
minimum operators and with average operators, respectively. If the recogni-
tion rates of the training data were not 100 percent, we list the recognition
rates in parentheses. For the all-at-once LS SVM, we list the recognition rates
in “Min” rows. The highest recognition rates of the test data are shown in
boldface.

We could not get the results of the all-at-once LS SVM other than for
the iris, numeral, and thyroid data sets due to memory overflow. In the same
reason, for the MNIST data set, we set C = 10,000 and used RBF kernels for
the pairwise LS SVM.

In the following, the recognition rate means that of the test data.
For all the data sets, the fuzzy pairwise LS SVMs performed best, and

except for the horagana-13 data set the average operator performed better
than the minimum operator.

Now compare the recognition rates of LS SVMs with those of SVMs listed
in Tables 3.2 and 3.3. For the SVMs, the performance depends on the data
sets; no single architecture performed best. But for the LS SVMs, the pairwise
fuzzy LS SVMs performed best. Except for the thyroid data set, the pairwise
LS SVM with the average operators showed the same or higher recognition
rates than the SVMs. Especially for the blood cell data set, the difference was
large. But for the thyroid data set, the recognition rate of the LS SVMs was
very poor. Therefore, the performance of LS SVMs is more dependable on the
data sets than that of the SVMs.

4.1 Least Squares Support Vector Machines 137

Table 4.1. Performance comparison of LS support vector machines

Data Item One-against-all Pairwise All-at-once

Iris Parm γ1, C104 d1, C50 d3, C104

Min 96.00 97.33 92.00

Avg. 96.00 98.67 —

Numeral Parm γ10, C50 d1, C10 γ0.1, C500

Min 99.39 99.27 (99.75) 99.02 (99.75)

Avg. 99.39 99.76 —

Thyroid Parm γ10, C105 γ10, C105 γ10, C105

Min 94.22 (97.38) 95.48 (98.49) 94.25 (97.91)

Avg. 94.22 (97.38) 95.57 (98.28) —

Blood cell Parm γ10, C500 d2, C105 —

Min 93.58 (96.48) 93.55 (97.87) —

Avg. 93.58 (96.48) 94.32 (98.10) —

Hiragana-50 Parm γ10, C104 γ1, C3000 —

Min 99.22 99.02 —

Avg. 99.22 99.33 —

Hiragana-13 Parm γ10, C104 γ10, C105 —

Min 99.64 (99.77) 99.90 —

Avg. 99.64 (99.77) 99.88 —

Hiragana-105 Parm γ10, C104 γ10, C7000 —

Min 100 100 —

Avg. 100 100 —

MNIST Parm — γ10, C104 —

Min — 98.79 —

Avg. — 98.79 —

Training Speed

Table 4.2 shows the training time of the one-against-all, pairwise, and all-at-
once LS SVMs for the polynomial kernels with degree 2. In training the LS
SVM, we used the Cholesky factorization to solve the set of linear equations.
For all the cases training of the pairwise LS SVM was the fastest, and training
of the all-at-once LS SVM was the slowest.2 For the blood cell and hiragana

2For conventional SVMs, this fact was shown in [114].

138 4 Variants of Support Vector Machines

data sets, we could not train the all-at-once LS SVM because of the memory
overflow. Therefore, as indicated in [237], we need to use iterative methods
for speedup and efficient memory use.

Table 4.2. Training time in seconds

Data One-against-all Pairwise All-at-once

Numeral 25 1 2026

Thyroid 716 409 1565

Blood cell 1593 59 —

Hiragana-50 15130 129 —

Classification Speed

Table 4.3 lists the classification time for linear kernels with the values of C de-
termined by the five-fold cross-validation for linear kernels. The conventional
and calculated methods mean that the weights are calculated for each datum
and the weights are calculated once before classification, respectively. Except
for the iris data set, which is very small, speedup by the calculated method is
evident.

Table 4.3. Classification time in seconds

Data Method One-against-all Pairwise All-at-once

Iris Conventional 0.01 0.00 0.01

Calculated 0.00 0.00 0.00

Numeral Conventional 3.1 2.7 3.2

Calculated 0.01 0.02 0.00

Thyroid Conventional 43 28 43

Calculated 0.02 0.02 0.02

Blood cell Conventional 80 52 —

Calculated 0.02 0.26 —

4.1 Least Squares Support Vector Machines 139

Influence of Outliers

Because LS SVMs use equality constraints instead of inequality constraints,
they are vulnerable to outliers [237]. The only difference between LS SVMs and
L2 SVMs is that the former uses equality constraints whereas the latter uses
the inequality constraints. Thus, we compared their recognition performance
when outliers were included.

For evaluation, we used the blood cell data belonging to Classes 2 and 3,
which overlap heavily and are difficult to classify. As outliers, we added 10
data belonging to classes other than 2 and 3 to Class 2 training data. We used
the polynomial kernel with degree 2.

84

86

88

90

92

94

96

1 10 100 1000 10000

C

R
ec

og
ni

tio
n

ra
te

 [%
]

With outliers

Without outliers

Training data

Test data

Fig. 4.1. Influence of outliers to LS SVM. Reprinted from [251, p. 791] with per-
mission from Elsevier

Figures 4.1 and 4.2 show the recognition rates against the margin param-
eter C for the LS SVM and L2 SVM, respectively. In the figures, the dotted
lines show the recognition rates of the training data and the solid lines show
those of the test data. We calculated the recognition rate of the training data
excluding outliers.

In Fig. 4.1, the recognition rates of the training data for the LS SVM did
not change much for 100 < C < 10,000 even if the outliers were included. But
the recognition rate of the test data dropped rapidly, especially when outliers
were included.

In Fig. 4.2, the recognition rates of the training data for the L2 SVM
increased as the value of C was increased, and there is not much difference
between the recognition rates with and those without outliers. In addition,
the recognition rate of the test data with outliers was almost constant for the
change of C, and for a large value of C it is better than without outliers.

140 4 Variants of Support Vector Machines

84

86

88

90

92

94

96

1 10 100 1000 10000

R
ec

og
ni

tio
n

ra
te

 [%
]

C

With outliers

Without outliers

Training data

Test data

Fig. 4.2. Influence of outliers to L2 SVM. Reprinted from [251, p. 791] with per-
mission from Elsevier

Comparing Figs. 4.1 and 4.2, we can see that the L2 SVM is more robust
than the LS SVM for outliers.

4.2 Linear Programming Support Vector Machines

In the original formulation of support vector machines, quadratic program-
ming problems need to be solved. But we can formulate classification problems
by linear programming, replacing the quadratic objective function with a lin-
ear function [29, 129, 229, 285]. In this section, we discuss linear programming
(LP) support vector machines, their characteristics, and their classification
performance for benchmark data sets.

4.2.1 Architecture

In the L1 soft-margin support vector machine, replacing the L2 norm ‖w‖2
2 =

w2
1 + w2

2 + · · · + w2
l in the objective function with an L1 norm ‖w‖1 = |w1| +

|w2| + · · · + |wl|, where w is a coefficient vector of the separating hyperplane,
we obtain the following LP support vector machine. Minimize

Q(w, ξ) =
l∑
i

|wi| + C

M∑
i=1

ξi (4.43)

subject to

yi (wT g(xi) + b) ≥ 1 − ξi for i = 1, . . . , M, (4.44)

4.2 Linear Programming Support Vector Machines 141

where C is the margin parameter, ξi are slack variables associated with the
training data xi, yi are class labels and are 1 if xi belong to Class 1 and −1
otherwise, g(x) is the l-dimensional mapping function that maps x into the
feature space, and b is the bias term.

By this formulation, for the linear kernel, i.e., g(x) = x, we can solve the
problem by linear programming. However, for the kernels other than linear
kernels, we need to treat the feature space explicitly.

To formulate an LP support vector machine in the feature space, we define
the decision function in the dual form as follows [215]:3

D(x) =
M∑
i=1

αi H(x,xi) + b, (4.45)

where αi take on real values. Thus, unlike L1 support vector machines, in
(4.45) we need not multiply αiH(x,xi) by yi . Then we consider minimizing

Q(α, ξ) =
M∑
i=1

(|αi| + C ξi) (4.46)

subject to

yj

(
M∑
i=1

αi H(xj ,xi) + b

)
≥ 1 − ξj for j = 1, . . . , M. (4.47)

Letting αi = α+
i −α−

i and b = b+−b−, where α+
i ≥ 0, α−

i ≥ 0, b+ ≥ 0, and
b− ≥ 0, we can solve (4.46) and (4.47) for α, b, and ξ by linear programming.
But because

w =
M∑
i=1

αi g(xi), (4.48)

minimization of the sum of |αi| does not lead to maximization of the margin
measured in the L1 norm.

By this formulation, the number of variables is 3M + 2 and the number
of inequality constraints is M . Thus for a large number of training data,
training becomes very slow even by linear programming. Therefore, we need
to use decomposition techniques [38].

Example 4.1. Consider solving the problem in Example 2.17 by the LP support
vector machine. Because the problem is linearly separable, (4.46) becomes

Q(α, ξ) = |α1| + |α2| + |α3| + |α4| (4.49)

3According to [98], by defining the mapping to the feature space by g(x) =
(H(x1,x), . . . , H(xM ,x))T , αi are considered to be the weight coefficients in the
feature space.

142 4 Variants of Support Vector Machines

and (4.47) becomes

α1 − α4 + b ≥ 1 for Datum 1, (4.50)
α2 − α3 + b ≥ 1 for Datum 2, (4.51)
α2 − α3 − b ≥ 1 for Datum 3, (4.52)
α1 − α4 − b ≥ 1 for Datum 4. (4.53)

Because (4.49) is minimized, from (4.50) and (4.53) or (4.51) and (4.52), b
needs to be 0. Thus, (4.50) to (4.53) reduce to

α1 − α4 ≥ 1, (4.54)
α2 − α3 ≥ 1. (4.55)

Therefore, (4.49) is minimized when

α1 = 1 − β1, α4 = −β1, (4.56)
α2 = 1 − β2, α3 = −β2, (4.57)

where 1 ≥ β1 ≥ 0 and 1 ≥ β2 ≥ 0.
Similar to the solution of the L1 support vector machine, the solution is

nonunique and the decision boundary is given by

D(x) = x1 + x2 = 0, (4.58)

which is the same as that for the L1 support vector machine. Notice that for
β1 = β2 = 0, α1 and α2, which belong to Class 1, are nonzero and α3 and α4
are zero. Thus, the definition of support vectors does not hold for LP support
vector machines.

Similar to L1 and L2 support vector machines, LP support vector machines
have degenerate solutions. Namely, αi are all zero. The difference is that LP
support vector machines have degenerate solutions when the value of C is
small as the following theorem shows.

Theorem 4.2. For the LP support vector machine, there exists a positive C0
such that for 0 ≤ C ≤ C0 the solution is degenerate.

Proof. Because of the slack variables ξi, (4.47) has a feasible solution. Thus,
for some C, (4.46) and (4.47) have the optimal solution with some αi being
nonzero.

For α = 0, (4.47) reduces to

yi b ≥ 1 − ξi. (4.59)

For b = 0, (4.59) is satisfied for ξi = 1. Then (4.46) is

Q(α, ξ) = MC. (4.60)

Thus, by decreasing the value of C from a large value, we can find a maximum
value of C, C0, in which (4.46) is minimized for α = 0. For 0 < C ≤ C0, it is
evident that α = 0 is the optimal solution for (4.46) and (4.47). �

4.2 Linear Programming Support Vector Machines 143

Zhou, Zhang, and Jiao [285] proposed a slightly different linear program-
ming support vector machine as follows. Minimize

Q(r, α, ξ) = −r + C
M∑
i=1

ξi (4.61)

subject to

yi

⎛
⎝ M∑

j=1

αj H(xj ,xi) + b

⎞
⎠ ≥ r − ξi for i = 1, . . . , M, (4.62)

r ≥ 0, (4.63)
−1 ≤ αi ≤ 1 for i = 1, . . . , M, (4.64)

ξi ≥ 0 for i = 1, . . . , M. (4.65)

In [285], αj yj is used instead of αj in (4.62). But this is not necessary because
αj may take on negative values. In conventional support vector machines r in
(4.62) is 1, but here r is maximized under the constraints (4.64).

Similar to two-class support vector machines, we can easily extend two-
class LP support vector machines to multiclass LP support vector machines,
such as one-against-all, pairwise, and ECOC LP support vector machines. But
because the extension is straightforward [7], we will not discuss the details
here.

4.2.2 Performance Evaluation

In this section, we first show the performance of LP support vector machines
(LP SVMs) for the two-class blood cell data used in Section 2.6.9. Then we
show the performance for the multiclass data sets listed in Table 1.1.

Performance of Two-Class LP Support Vector Machines

Figure 4.3 shows the recognition rates and the number of support vectors
against the polynomial degree with C = 5000. As the polynomial degree
becomes higher, the recognition rate of the training data increases and reaches
100 percent for the polynomial degree of four. But the recognition rate of the
test data reaches the maximum at the polynomial degree of two and decreases
afterward.

Figure 4.4 shows the recognition rates and the number of support vectors
against the RBF kernel parameter γ with C = 5000. As the value of γ becomes
larger, the recognition rate of the training data increases. But the recognition
rate of the test data reaches the maximum at γ = 3. The number of support
vectors increases as the value of γ increases.

Figure 4.5 shows the recognition rates and the number of support vectors
against C for RBF kernels with γ = 1. For C = 0.1, the recognition rates

144 4 Variants of Support Vector Machines

80%

85%

90%

95%

100%

0

20

40

60

80

100
SVsTrain.Test

87654321

Polynomial degree

S
up

po
rt

 v
ec

to
rs

R
ec

og
ni

tio
n

ra
te

Fig. 4.3. Recognition rates and support vectors against a polynomial degree

80%

85%

90%

95%

100%

20

40

60

80

100
SVsTrain.Test

87654321

γ

R
ec

og
ni

tio
n

ra
te

S
up

po
rt

 v
ec

to
rs

Fig. 4.4. Recognition rates and support vectors against γ

are very low due to the effect of the degenerate solution. For C = 0.01, the
degenerate solution was obtained. The recognition rates of the test data do
not vary very much for C larger than or equal to 1.

4.2 Linear Programming Support Vector Machines 145

50%

60%

70%

80%

90%

100%

0

10

20

30

40

50
SVsTrain.Test

1000010001001010.1

C

R
ec

og
ni

tio
n

ra
te

S
up

po
rt

 v
ec

to
rs

Fig. 4.5. Recognition rates and support vectors against C

Performance of Multiclass LP Support Vector Machines

Here we show the performance of one-against-all and pairwise fuzzy LP SVMs.
We determined the kernels and parameters by five-fold cross-validation except
for one-against-all fuzzy LP SVMs for the thyroid, blood cell, and hiragana
data sets. For each following kernel, we set the value of C from 1, 10, 50, 100,
500, 1000, 2000, 3000, 5000, 7000, 10,000, and 100,000 and determined the
optimal kernel and the parameters:

1. linear kernels and polynomial kernels with degrees 2, 3, and 4;
2. RBF kernels with γ = 0.1, 1, and 10; and
3. neural network kernels with ν = 0.2 and a = 0.1.

Here, we used neural network kernels because kernels need not be positive
semidefinite.

Because we used the simplex method, we could not determine the optimal
parameters of the one-against-all LP SVM, by cross-validation, for data sets
other than iris and numeral data sets. For these data sets we trained the LP
SVM without cross-validation and selected the kernel and the value of C with
the highest recognition rates of the test data. (For hiragana-105 data set, we
set C = 10,000.) But because cross-validation worked well, this did not favor
one-against-all LP SVM very much.

Tables 4.4 and 4.5 show the parameters, recognition rates of the one-
against-all LP SVM and pairwise LP SVM, and the average number of support
vectors per decision function. The recognition rates of the training data are
shown in parentheses when they are not 100 percent. For each data set, the

146 4 Variants of Support Vector Machines

maximum recognition rate of the test data is shown in boldface. From the
tables, the recognition rates of the test data of both methods are comparable.

Similar to the one-against-all fuzzy SVMs, the recognition rates of the
fuzzy LP SVMs with minimum and average operators were the same. Com-
paring to Tables 3.2 and 3.3, the recognition rates of the test data are com-
parable but a little lower. But the numbers of support vectors of LP SVMs
are smaller. This is because in LP SVMs, the sum of |αi| is minimized. Thus
it leads to fewer support vectors.

Similar to the pairwise fuzzy SVMs, the recognition rates of the fuzzy LP
SVMs with minimum and average operators are almost the same. Comparing
to Tables 3.2 and 3.3, the recognition rates of the test data by fuzzy LP SVMs
are slightly lower but the numbers of support vectors are smaller.

4.3 Incremental Training

Support vector machines are suited for incremental training due to the fact
that only support vectors are necessary for training [185, 198, 222, 273]. When
new incremental training data are obtained we estimate the candidates of sup-
port vectors, and using only these data we train the support vector machine.
In [273], the least-recently used (LRU) strategy, which is a page replacement
algorithm for paged memory allocation of a computer, is used for discarding
the least-recently used data for training the support vectors. In [222], initial
value selection for incremental training is considered using all the data pre-
viously used for training, but selection of the training data is not considered.
Namely, when new data are added, we “hot start” the training from the old
solution plus the initial values for the added data with αi = 0 for yi D(xi) > 1
and αi = C for yi D(xi) ≤ 1. In [198], when a new datum xt with ytD(xt) ≤ 1
is obtained, incremental training using the working set that includes xt and
the data near xt is performed.

Here, exploiting the properties of support vector machines, we discuss
an incremental training method, which is slightly different from [273], for
a one-against-all support vector machine. First we explain how to estimate
the candidates of support vectors using Fig. 4.6. In the figure, assume that
the data shown in filled circles and rectangles are newly obtained training
data. The optimal hyperplane Di(x) = 0 that separates class i from the
remaining classes was determined using the data excluding those data. Then
if we retrain the support vector machine, the data that satisfy y(x) Di(x) ≤ 1
are candidates for support vectors where y(x) = 1 when x belongs to class i
and y(x) = −1, otherwise. In addition, the data that satisfy y(x) Di(x) > 1
but are near y(x) Di(x) = 1 can be support vectors. Thus we determine that
the data are candidates for support vectors if

y(x) Di(x) ≤ β + 1 (4.66)

4.3 Incremental Training 147

Table 4.4. Performance comparison of LP support vector machines

Data Item One-against-all LP SVM Pairwise LP SVM

Iris Parm γ0.1, C100 γ1, C5000

Dis. 92.00 (94.67) 92.00

Min 94.67 (97.33) 92.00

Avg. 94.67 (97.33) 92.00

SVs 3 3

Numeral Parm d2, C1 γ10, C5000

Dis. 99.27 (99.63) 99.39

Min 99.51 (99.75) 99.39

Avg. 99.51 (99.75) 99.39

SVs 7 4

Thyroid Parm d3, C500 Linear, C5000

Dis. 95.36 (99.18) 97.35 (98.59)

Min 97.58 (99.66) 97.64 (98.78)

Avg. 97.58 (99.66) 97.67 (98.78)

SVs 76 14

Blood cell Parm γ10, C50 γ10, C50

Dis. 88.10 (93.57) 91.90 (97.16)

Min 92.90 (96.51) 92.52 (97.26)

Avg. 92.90 (96.51) 92.65 (97.32)

SVs 28 6

Hiragana-50 Parm γ10, C1000 γ10, C50

Dis. 94.69 97.44 (99.93)

Min 98.13 97.87 (99.98)

Avg. 98.13 97.79

SVs 31 8

Hiragana-13 Parm γ10, C104 nn, C5000

Dis. 96.15 98.79 (99.81)

Min 99.23 99.13 (99.87)

Avg. 99.23 99.16 (99.93)

SVs 29 4

148 4 Variants of Support Vector Machines

Table 4.5. Performance comparison of LP support vector machines

Data Item One-against-all LP SVM Pairwise LP SVM

Hiragana-105 Parm γ10, C104 γ10, C50

Dis. 99.84 100

Min 100 100

Avg. 100 100

SVs 39 9

is satisfied, where β (> 0) is a user-defined parameter. But if all the new data
satisfy

y(x) Di(x) ≥ 1, (4.67)

retraining of the support vector machine adding the new data will give the
same support vector machine. Thus in this case, we only need to add the data
that satisfy (4.66) to the training data for future training. (The same idea is
discussed in “practical considerations” of [51].)

x1

x2

0

Optimal hyperplane

δ β

Di (x) = 0

Di (x) = 1

Di (x) = −1

Class i

δ β

Fig. 4.6. Estimating the candidates for support vectors

Assume that we have a training set Xa in addition to the set Xc that was
used for training the current classifier. The general procedure for incremental
training for an n-class problem is as follows:

1. Initialize the set S, i.e., S = φ.

4.5 Bayesian Support Vector Machines 149

2. If for x ∈ Xa, y(x) Di(x) < β + 1 is satisfied for i (i ∈ {1, . . . , n}), add x
to the set S, i.e., S = S ∪ {x}.

3. Add S to Xc, i.e., Xc = Xc ∪ S.
4. If all the data in Xa satisfy (4.67), we do not retrain the support vector

machine. Otherwise, go to Step 5.
5. Using Xc we retrain the support vector machine. After the training, if for

x ∈ Xc, y(x) Di(x) > β + 1 is satisfied for all i (i = 1, . . . , n), we delete x
from the set S, i.e., S = S − {x}.

Because δ ‖wi‖ = 1, (4.66) is rewritten as follows:

y(x) Di(x)
‖wi‖ ≤ δ (β + 1), (4.68)

where δ is the margin. Namely, the distance of x from the hyperplane
y(x) Di(x) = 1 is δ β. As the new training data are added to the training
data, the value of the margin δ decreases or remains the same. Thus, the re-
gions that extract support vector candidates are shrunk as the incremental
training proceeds even for the fixed value of β.

4.4 Robust Support Vector Machines

Compared to conventional classifiers, support vector machines are robust for
outliers because of the margin parameter that controls the trade-off between
the generalization ability and the training error. But there are several ap-
proaches to enhance robustness of support vector machines [57, 110, 139, 176,
265, 267, 284].

Herbrich and Weston [110, 265, 267] introduced an adaptive margin for
each training datum so that the margins for outliers become large and hence
the classification becomes robust.

When outliers are included, the median of data is known to be more robust
than the center of data [3]. Kou, Xu, Zhang, and Ji [139] proposed median
support vector machines (MSVM), an improved version of central support
vector machines [284], to improve robustness of support vector machines. In-
stead of maximizing the separating margin of two classes, in MSVMs, the sum
of distances of the class medians to the decision boundary is maximized.

4.5 Bayesian Support Vector Machines

To improve generalization ability of support vector machines, Burges and
Schölkopf [47] introduced virtual support vectors. First, train a support vec-
tor machine using a training data set. Then obtain virtual support vectors
by applying, to the obtained support vectors, linear transformations, such
as translation, scaling, and rotation for character recognition. Finally, train

150 4 Variants of Support Vector Machines

another support vector machine using the virtual support vectors. By this
method, the generalization ability for the handwritten numeral classification
was improved but the classification time was increased due to the increase in
the number of support vectors. To shorten the classification time, Burges and
Schölkopf [47] proposed approximating the decision function with a smaller
set of data.

To improve class separability, Amari and Wu [15, 16] proposed enlarging
the regions around support vectors by replacing H(x,x′) with

H̃(x,x′) = c(x) c(x′) H(x,x′), (4.69)

where c(x) is a positive scalar function, and one example is

c(x) =
M∑
i=1

αi exp(−‖x − xi‖/2τ2). (4.70)

Here, τ is a parameter. It is shown that by (4.69) the volumes around support
vectors are expanded in the feature space. Thus class separability is increased.

In LS support vector machines, after determination of the bias term of
a hyperplane, it is further tuned to improve classification accuracy [157]. A
similar technique is also discussed in [81]. In the following, we discuss the
generalization improvement by optimizing the bias term based on the Bayes’
theory [117]. We call this support vector machine the Bayesian support vector
machine.

In support vector machines, the optimal hyperplane is placed in the middle
of the support vectors belonging to different classes. This is because the train-
ing data are generated by a single unknown probability distribution. Thus,
if the distribution of each class is known, we can improve the generalization
ability by the Bayes’ theory. In the following we assume that the distribution
of the class data in the direction perpendicular to the optimal hyperplane
is normal. Under the assumption, the optimal separating hyperplane is no
longer optimal; the boundary determined by the Bayes’ theory becomes op-
timal. Thus, by the parallel displacement of the optimal hyperplane to the
position determined by the Bayes’ theory, we can improve the generalization
ability.

In the following, we first discuss the one-dimensional Bayesian decision
function. Then we move the optimal hyperplane in parallel so that the class
boundary becomes the boundary given by the Bayesian decision function, and
we discuss how to test whether the class data are normal.

4.5.1 One-Dimensional Bayesian Decision Functions

Let two classes be C1, C2, where C1 is on the positive side of the hyperplane
and C2 on the negative side. The posterior probability that the observed x
belongs to class Ck, P (Ck |x), is given by

4.5 Bayesian Support Vector Machines 151

P (Ck |x) =
P (Ck) p(x |Ck)

p(x)
, (4.71)

where P (Ck) is the a priori probability of class Ck, p(x |Ck) is the conditional
probability density function when x belonging to class Ck is observed, and
p(x) is a probability density function given by

p(x) =
2∑

k=1

P (Ck) p(x |Ck),
∫

p(x) dx = 1. (4.72)

Equation (4.71) is called Bayes’ rule.
We assume that one-dimensional data, which belong to Class Ck, obey the

normal distribution with the mean µk and the variance σ2
k given by

p(x |Ck) =
1√

2 π σ2
k

exp
(

− 1
2 σ2

k

(x − µk)2
)

. (4.73)

According to Bayes’ theory, the optimal classification is to classify the
datum to the class with the maximum posterior probability. Instead of com-
paring the posterior probabilities, we compare the logarithms of the posterior
probabilities, deleting the term p(x) common to the classes:

gk(x) = log P (Ck) − 1
2

(
log(2π σ2

k) +
1
σ2

k

(x − µk)2
)

. (4.74)

Thus the Bayesian decision function for the two classes is given by

Dbayes(x) = g1(x) − g2(x)

= log
P (C1)
P (C2)

−1
2

(
log

σ2
1

σ2
2

+
1
σ2

1
(x − µ1)2 − 1

σ2
2

(x − µ2)2
)

. (4.75)

If Dbayes(x) > 0, x is classified into class C1, and if Dbayes(x) < 0, class C2.

4.5.2 Parallel Displacement of a Hyperplane

We move the hyperplane obtained by training an L1 support vector machine,
in parallel, by the Bayesian decision function.

Let the optimal hyperplane be

D(x) = wT g(x) + b = 0, (4.76)

where w is the l-dimensional weight vector, g(x) is the mapping function from
x to the l-dimensional feature space, and b is the bias term.

152 4 Variants of Support Vector Machines

First we calculate the component (xe)j of datum xj in the direction or-
thogonal to the separating hyperplane:

(xe)j =
wT g(xj)

‖w‖ =
M∑
i=1

δ αi yi H(xi,xj), (4.77)

where δ is the margin and δ‖w‖ = 1, yi = 1 if xi belongs to Class 1 and −1
otherwise, and αi is a dual variable associated with xi. Then we calculate the
center

µk =
1
nk

nk∑
j=1

(xe)j

and the variance

vk =
1
nk

nk∑
j=1

((xe)j − µk)2

for class Ck, where nk is the number of class Ck data. Substituting these data
into (4.75), we calculate the bias term of the Bayes’ decision boundary, bbayes.
Namely, we solve

Dbayes(x) = 0 (4.78)

for x and obtain xb1 , xb2(xb1 > xb2). Then because bbayes = −xb1 , we replace
b with bbayes. Here, we set P (Ck) as follows:

P (Ck) =
Number of data belonging to Ck

Total number of data
. (4.79)

If the recognition rate of the training data is decreased by the parallel
displacement of the optimal hyperplane, we do not move the hyperplane so
that the generalization ability is not worsened.

4.5.3 Normal Test

To move the optimal hyperplane, we first need to test if the distribution of
training data in the direction orthogonal to the hyperplane is normal. The
procedure is as follows.

First, using the number of data belonging to class Ck (k = 1, 2) and the
center µk, we determine the number of divisions and the width and generate
a frequency distribution. Assume that we divided the interval into p divisions.
Let the probability that division j occurs be pj and the probability assuming
the normal distribution be πj . We set the hypothesis:

H0 : pj = πj for j = 1, . . . , p,

H1 : pj �= πj for j ∈ {1, . . . , p}.

If hypothesis H0 holds, the normal distribution is assumed. Let among nk

observations, fj observations belong to division j and the number of expected

4.7 Confidence Level 153

observations under the normal distribution be ej = nkπj . Then the deviation
from the expected observation

x2 =
p∑

j=1

(fj − ej)2

ej
=

p∑
j=1

f2
j

ej
− nk (4.80)

obeys the χ-square distribution with freedom ν = p−r−1 under the hypothesis
H0, where r is the number of independent variables. Because we use the center
and variances, r = 2. Therefore, we calculate the value of x2 and that if it is
not within the critical region with the level of significance s,

R = {x2 |x2 > χ2
p−3(s)}, (4.81)

we judge that the hypothesis that the distribution is normal is correct. If not,
it is not normal.

4.6 Committee Machines

A committee machine, which is based on the principle of divide and conquer,
consists of a number of classifiers with different classification powers, whose
decisions are combined into a single decision by some strategy such as voting
[108, 271]. A boosting machine is one type of committee machine, and each
machine is trained using a different subset of training data.

There is much work on committee machines using support vector machines.
For example, Martinez and Millerioux [161] used support vector machines with
different kernels. Committee machines can alleviate the long training time
caused by large training data by splitting the training data into approximately
equal-size subsets, each of which constitutes a training data for each committee
machine [217].

4.7 Confidence Level

Conventional support vector machines give a prediction result but without its
confidence level. One way to give this is the introduction of fuzzy membership
functions as discussed in Chapter 3.

Another approach is to obtain the confidence level assuming that the train-
ing pairs are generated by an independent and identically distributed (i.i.d.)
process [92, 263]. Platt [191] proposed, in addition to support vector machine
training, to train the sigmoid function that maps the support vector machine
outputs into posterior probabilities. This method is extended to multiclass
problems by Frasconi, Passerini, and Vullo [85].

Fumera and Roli [91] modified the objective function of the support vector
machine so that the rejection region is obtained.

154 4 Variants of Support Vector Machines

4.8 Visualization

Interpretability of the classifier or explanation of the decision process is es-
pecially important for decision support systems such as medical diagnosis.
Without it, a classifier would not be used even if it has high generaliza-
tion ability.4 Support vector machines have high generalization ability com-
pared to other classifiers but interpretability is relatively low, especially when
nonlinear kernels are used. Thus to improve interpretability [49, 89, 179] is
very important for the support vector machines to be used in such a field.

4Discussions with Prof. H. Motoda.

5

Training Methods

In training an L1 or L2 support vector machine, we need to solve the quadratic
programming problem with the number of variables equal to the number of
training data. Thus when the number of training data is very large, training
takes time. To speed up training, several methods have been proposed, which
are classified into two approaches. One is to extract support vector candidates
and then train the support vector machine using these data. The other is to
accelerate training by decomposition techniques, in which a small problem is
repeatedly solved.

In this chapter, we discuss preselection of support vector candidates and
training methods using decomposition techniques. We explain widely used
primal-dual interior-point training methods and steepest ascent training meth-
ods, which are extensions of the sequential minimal optimization technique
(SMO). We also discuss training methods for LP support vector machines.

5.1 Preselecting Support Vector Candidates

According to the architecture of the support vector machine, only the training
data near the boundaries are necessary. In addition, because the training
time becomes longer as the number of training data increases, the training
time is shortened if the data far from the boundary are deleted. Therefore,
if we can delete unnecessary data from the training data efficiently prior to
training, we can speed up training. Several approaches have been developed
to preselect support vector candidates [9, 71, 225, 232, 233, 277, 283]. In [71],
all the training data are first clustered by the k-means clustering algorithm.
Then if a generated cluster includes data that belong to the same class, the
data are discarded. But if a generated cluster includes data with different
classes, these data are retained for training, assuming that they may include
support vectors. The k-means clustering algorithm is not a requisite. It may
be the fuzzy c means clustering algorithm or the Kohonen network. This
method works when classes overlap, but if classes are well separated, it may

156 5 Training Methods

not extract boundary data. In [225, 232], k nearest neighbors are used to
detect the boundary data.

In [277], a superset of support vectors called guard vectors is extracted
by linear programming. Assume that the set of training input-output pairs
{(x1, y1), . . . , (xM , yM)} is linearly separable, where yi are either 1 or −1.
Then there exists a separating hyperplane that includes a datum xi:

y1
(
wT x1 + b

) ≥ 0,

· · · · · · · · ·
yi−1

(
wT xi−1 + b

) ≥ 0,

yi

(
wT xi + b

)
= 0, (5.1)

yi+1
(
wT xi+1 + b

) ≥ 0,

· · · · · · · · ·
yM

(
wT xM + b

) ≥ 0.

We call the datum xi that satisfies (5.1) the guard vector. Clearly the support
vectors are guard vectors but the reverse is not true. Thus the set of guard
vectors is a superset of the set of support vectors. To obtain the set of guard
vectors, we solve (5.1) by linear programming, changing i from 1 to M . Unlike
usual linear programming we need only to check whether xi is a feasible
solution of (5.1). If the training data set is not linearly separable, we need to
map the original input space into the feature space. But because the kernel
LP has not been developed yet, in [277], the original input space is extended
to the (n + M)-dimensional space where the (n + i)th element is 1 for xi and
0 otherwise.

In this section we discuss speedup of training by deleting unnecessary
training data [9]. We estimate the data near the boundaries using the classifier
based on the Mahalanobis distance and extracting the misclassified data and
the data near the boundaries.

5.1.1 Approximation of Boundary Data

The decision boundaries of the classifier using the Mahalanobis distance are
expressed by the polynomials of the input variables with degree 2. Therefore,
the boundary data given by the classifier are supposed to approximate the
boundary data for the support vector machine, especially with the polynomial
kernels with degree 2.

For the class i data x, the Mahalanobis distance di(x) is given by

d2
i (x) = (ci − x)T Q−1

i (ci − x), (5.2)

where ci and Qi are the center vector and the covariance matrix for the data
belonging to class i, respectively:

5.1 Preselecting Support Vector Candidates 157

ci =
1

|Xi|
∑

x ∈Xi

x, (5.3)

Qi =
1

|Xi|
∑

x ∈Xi

(x − ci) (x − ci)T . (5.4)

Here, Xi denotes the set of data belonging to class i and |Xi| is the number of
data in the set. The data x is classified into the class with the minimum Ma-
halanobis distance. The most important feature of the Mahalanobis distance
is that it is invariant for linear transformation of input variables. Therefore,
we do not worry about the scaling of each input variable.

For the datum belonging to class i, we check whether

r(x) =
min

j �=i,j=1,...,n
dj(x) − di(x)

di(x)
≤ η (5.5)

is satisfied, where r(x) is the relative difference of distances, η (> 0) controls
the nearness to the boundary, and 0 < η < 1. If r(x) is negative, the datum
is misclassified. We assume that the misclassified data are near the decision
boundary. Equation (5.5) is satisfied when the second minimum Mahalanobis
distance is shorter than or equal to (1 + η) di(x) for the correctly classified x.

In extracting boundary data, we set some appropriate value to η and for
each class we select the boundary data whose number is between Nmin and
Nmax. Here the minimum number is set so that the number of boundary data
is not too small for some classes because the data that satisfy (5.5) are scarce.
The maximum number is set not to allow too many data to be selected. A
general procedure for extracting boundary data is as follows:

1. Calculate the centers and covariance matrices for all the classes using (5.3)
and (5.4).

2. For the training datum x belonging to class i, calculate r(x) and put the
data into the stack for class i, Si, whose elements are sorted in increasing
order of the value of r(x) and whose maximum length is Nmax. Iterate
this for all the training data.

3. If stack Si includes more than Nmin data that satisfy (5.5), select these
data as the boundary data for class i. Otherwise, select the first Nmin data
as the boundary data.

This procedure is refined according to the architecture of the multiclass
support vector machine. If we use the pairwise classification, in determining
the decision boundary for classes i and j, we calculate r(x) only for classes i
and j. If we use the one-against-all multiclass architecture, in determining the
decision boundary for class i and the remaining classes, we assume that the
remaining classes consist of n − 1 clusters and use (5.5) to extract boundary
data.

158 5 Training Methods

5.1.2 Performance Evaluation

Although the performance varies as kernels vary, the polynomial kernels with
degree 2 perform relatively well. Thus in the following study, we use the poly-
nomials with degree 2 as the kernels. We evaluated the method using the iris
data, blood cell data, and hiragana data listed in Table 1.1. Except for the iris
data, we set Nmax as the half of the maximum number of class data, namely
200. And we set Nmin = 50 and evaluated the performance changing η.

We ran the software developed by Royal Holloway, University of London
[210], on a SUN UltraSPARC-IIi (335MHz) workstation. The software used
pairwise classification. The training was done without decomposition. The
data, which were originally scaled in [0, 1], were rescaled in [−1, 1].

Because the number of the iris data is small, we checked only the lowest
rankings, in the relative difference of the Mahalanobis distances, of support
vectors for the pairs of classes. Table 5.1 lists the results when the boundary
data were extracted for each class. The numeral in the ith row and the jth
column shows the lowest ranking of the support vectors, belonging to class i,
for a pair of classes i and j. The diagonal elements show the number of training
data for the associated class. The maximum value among the lowest rankings
was 8, which was smaller than half the number of class data. Thus, the relative
difference of the Mahalanobis distances well reflected the boundary data.

Table 5.1. The lowest rankings of support vectors for the iris data

Class 1 2 3

1 (25) 1 2

2 8 (25) 3

3 2 3 (25)

Table 5.2 lists the results for the blood cell and hiragana data sets. The
column “Selected” lists the number of data selected and the first row in each
data set shows the results when all the training data were used. The numerals
in parentheses in the “Time” column show the time for extracting boundary
data and the speedup ratios were calculated, including the time for extracting
boundary data.

For η = 2 to 4, two to five times speedup was obtained without deterio-
rating the recognition rates very much.

5.2 Decomposition Techniques 159

Table 5.2. Performance for the blood cell and hiragana data (Nmax = 200 and
Nmin = 50)

Data η Selected Rate Time Speedup

(%) (s)

Blood cell — 3097 92.13 (99.32) 924 1

2.0 2102 92.13 (99.29) 448 (2) 2.1

Hiragana-50 — 4610 98.91 (100) 2862 1

2.0 2100 97.11 (98.68) 644 (28) 4.2

4.0 3611 98.79 (100) 1690 (28) 1.7

Hiragana-105 — 8375 100 (100) 11,656 1

2.0 2824 99.61 (99.65) 1908 (177) 5.6

3.0 5231 99.99 (99.99) 5121 (187) 2.2

Hiragana-13 — 8375 99.57 (100) 9183 1

2.0 4366 99.56 (100) 2219 (16) 4.1

5.2 Decomposition Techniques

To reduce the number of variables in training, Osuna, Freund, and Girosi [182]
proposed decomposing the problem into two. Let the index set {1, . . . , M}
be partitioned into two sets W and N , where W ∪ N = {1, . . . , M} and
W ∩ N = φ. Then decomposing {αi | i = 1, . . . , M} into αW = {αi | i ∈ W}
and αN = {αi | i ∈ N}, we define the following subproblem. Fixing αN ,
maximize

Q(αW) =
∑

i ∈ W

αi − 1
2

∑
i,j ∈ W

αi αj yi yj H(xi,xj)

−
∑

i ∈ W,
j ∈ N

αi αj yi yj H(xi,xj)

−1
2

∑
i,j ∈ N

αi αj yi yj H(xi,xj) +
∑
i ∈N

αi (5.6)

subject to the constraints∑
i ∈ W

yi αi = −
∑
i ∈ N

yi αi, 0 ≤ αi ≤ C for i ∈ W. (5.7)

Because the equality constraint in (5.7) is satisfied for |W | ≥ 2, the mini-
mum number of |W | is two.

160 5 Training Methods

A decomposition technique is usually called chunking; there are variable-
size chunking and fixed-size chunking [210]. A procedure for the variable-size
chunking is as follows:

1. Set F points from the training data set to W , where F is a fixed positive
integer.

2. Solve the subproblem for αW .
3. Delete the variables except for the support vector candidates and add F

points that do not satisfy the KKT conditions and go to Step 2. Otherwise,
terminate the algorithm.

By this algorithm the working set size increases as the iteration proceeds.
The procedure of the fixed-size chunking is as follows [182]:

1. Select |W | points from the training data set.
2. Solve the subproblem for αW .
3. If there exist such αj (∈ αN) that do not satisfy the KKT conditions,

replace any αi (∈ αW) with αj and go to Step 2. Otherwise, terminate
the algorithm.

The convergence characteristics of decomposition techniques have been
investigated [131, 152, 153]. Especially for the working set size of two, if the
variables that violate the KKT conditions most are selected, the asymptotic
convergence of the algorithm is guaranteed [131, 153].

In [207], to speed up the chunking algorithm, two methods for estimating
the support vector candidates, which are used for the first chunk, are proposed.
The procedure of the method that performed better for benchmark data sets
is as follows:

1. For each datum belonging to Class 1, find the datum belonging to Class
2 with the minimum distance in the feature space (see Fig. 5.1 (a)).

2. Among the selected pairs with the same Class 2 datum, select the pair
with the minimum distance as the support vector candidates (see Fig. 5.1
(b)).

3. Iterate Steps 1 and 2 exchanging Class 1 and Class 2.
4. If the obtained data are not sufficient, delete the obtained data from the

training data and iterate Steps 1 to 3 several times.

For the thyroid data, for the chunk sizes from 10 to 480, the training time
was reduced by 12.3 percent on the average (50 percent in maximum) over
the random chunking algorithm.

This algorithm can be used for preselection of training data [137]. Figure
5.2 shows the results when the algorithm was used for preselecting the data.
In Step 1, the distance was measured in the input space, instead of the fea-
ture space, and Step 2 was not executed. The figure shows the recognition
rates of the thyroid test data when the training data were preselected and
all the training data were used for training the one-against-all support vector
machine. The rate of support vector selection shows the number of support

5.2 Decomposition Techniques 161

x1

x2

0
x1

x2

0

Class 1

Class 2 Class 2

Class 1

(a) (b)

Fig. 5.1. Selection of support vector candidates: (a) For each Class 1 datum select
a pair belonging to Class 2 with the minimum distance. (b) For the selected pairs
with the same Class 2 datum, select the pair with the minimum distance

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of iterations

Recognition rates with all data

Recognition rates with selected data

Rates of SV selection

R
ec

og
ni

tio
n

ra
te

 (
%

)

Fig. 5.2. Recognition rate by preselecting the thyroid training data (d = 3, C =
10,000)

vectors, which are included in the selected data, divided by the number of sup-
port vectors for all the training data. By one iteration of the algorithm, the
recognition rate was 4 percent lower than using all the training data, and for
two to three iterations, the recognition rate was 2 percent lower. The training
time with three iterations was 5 seconds by a Pentium III 1G personal com-
puter, compared to the 40 seconds using all the training data. But even if we
increased the iterations, the recognition rate did not reach the rate by using
all the training data. This is reflected to the rate of support vector selection.

162 5 Training Methods

For the one-against-all support vector machine, one class has a smaller
number of training data than the other. Thus if the selected data are deleted
in Step 4, the training data for one class become extinct before the support
vectors for the other class are selected. Thus, to prevent this, we stop deleting
the training data for one class. Figure 5.3 shows the result for the modified
algorithm. After nine iterations, the recognition rates are almost the same,
and the training time including the selection time was 29 seconds, and the
selected data was one third of the training data.

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Recognition rates with all data

Recognition rates with selected data

Rates of SV selection

Number of iterations

R
ec

og
ni

tio
n

ra
te

 (
%

)

Fig. 5.3. Recognition rate by preselecting the thyroid training data without deleting
the data for one class (d = 3, C = 10,000)

5.3 KKT Conditions Revisited

The KKT conditions for L1 support vector machines given by (2.63) to (2.65)
are satisfied for the optimal solution. But because the bias term b is not
included in the dual problem, if we detect the data that violate the KKT
conditions using these equations, we need to estimate b. Thus, it will lead to
incorrect detection. We call the KKT conditions including the bias term in-
exact KKT conditions. To avoid this, we need to redefine the KKT conditions
for the dual problem that do not include b. We call them exact KKT condi-
tions. In the following, we discuss the KKT conditions for the dual problem
based on Keerthi and Gilbert [131].

We define Fi by

Fi = yi −
M∑

j=1

yj αj H(xi,xj). (5.8)

5.3 KKT Conditions Revisited 163

We can classify the KKT conditions into the following three cases:

1. αi = 0

yi b ≥ yi Fi,

2. 0 < αi < C

b = Fi,

3. αi = C

yi b ≤ yi Fi.

Then we define F̃i, F̄i as follows:

F̃i = Fi if (yi = 1, αi = 0), 0 < αi < C

or (yi = −1, αi = C), (5.9)
F̄i = Fi if (yi = −1, αi = 0), 0 < αi < C

or (yi = 1, αi = C). (5.10)

Then the KKT conditions are simplified as follows:

F̄i ≥ b ≥ F̃i for i = 1, . . . , M. (5.11)

Depending on the value of αi, F̄i or F̃i is not defined. For instance, if yi = 1
and αi = C, F̃i is not defined.

To detect the violating variables, we define blow and bup as follows:

blow = max
i

F̃i,

bup = min
i

F̄i.
(5.12)

If the KKT conditions are satisfied,

bup ≥ blow. (5.13)

Figure 5.4 (a) illustrates the KKT conditions that are satisfied. The filled
rectangles show F̄i and the filled circles show F̃i.

We can use (5.13) as a stopping condition for training. To lighten a com-
putational burden, we loosen (5.13) as follows:

bup ≥ blow − τ, (5.14)

where τ is a positive tolerance parameter.
Figure 5.4 (b) shows the case where the KKT conditions are not satisfied.

The data between the two dotted lines are the data that violate the KKT
conditions. We define the τ -violating set VKKT:

VKKT = {xi | bup < F̃i − τ or blow > F̄i + τ

for i ∈ {1, . . . , M}}. (5.15)

For α = 0, blow = F̃i = 1 and bup = F̄i = −1. Thus, if we set α = 0 for
the initial vector, all the data violate the KKT conditions.

164 5 Training Methods

bup

(a) (b)

blow

Fibup
Fi

blow Fj
~

Fj
~

Fig. 5.4. KKT conditions for a dual problem: (a) KKT conditions satisfied, (b)
KKT conditions violated

Example 5.1. We examine if the solution (α1, α2, α3, α4) = (1, 0, 1, 0) in Ex-
ample 2.17 satisfies the KKT conditions. Because

F̄1 = F̄3 = F̄4 = F̃1 = F̃2 = F̃3 = 0,

we obtain

bup = blow.

Thus the KKT conditions are satisfied.
Let (α1, α2, α3, α4) = (0.8, 0, 1, 0). Then because

F̄1 = F̃1 = 0.2, F̃2 = F̄3 = F̃3 = 0, F̃4 = −0.2,

we obtain

bup = −0.2, blow = 0.2.

Thus the τ -violating set with τ = 0 is

VKKT = {1, 2, 3}.

The following example shows that bup > blow when the primal solution is
not unique.

Example 5.2. Reconsider Example 2.18. When C < 1/2, α1 = α2 = C. Thus,

F̃1 = −1 + 2 C,

F̄2 = 1 − 2 C.

Thus the KKT conditions are satisfied and

1 − 2 C ≥ b ≥ −1 + 2 C.

5.4 Overview of Training Methods 165

Similar to L1 soft-margin support vector machines, we can derive the KKT
conditions for L2 soft-margin support vector machines. For the L2 support
vector machine, the KKT conditions are as follows:

1. αi = 0

yi b ≥ yi Fi,

2. αi > 0

b = Fi − yi αi

C
.

Then F̃i and F̄i are

F̃i = Fi − yi αi

C
if (yi = 1, αi = 0) or αi > 0, (5.16)

F̄i = Fi − yi αi

C
if (yi = −1, αi = 0) or αi > 0. (5.17)

The KKT conditions are simplified as follows:

F̄i ≥ b ≥ F̃i for i = 1, . . . , M. (5.18)

The remaining procedure is the same as that of the L1 support vector machine.

5.4 Overview of Training Methods

Training of a support vector machine results in solving a quadratic program-
ming (QP) program. But commercially available QP solvers are not suited for
training a support vector machine with a large number of training data due to
long training time and large memory consumption. To overcome this problem,
QP solvers have been combined with the decomposition techniques or other
training methods have been developed. There are now many downloadable
programs that train support vector machines.

Conventional learning algorithms developed for perceptrons are adapted
to be used in the feature space [48, 86, 88, 104, 274]. The kernel-Adatron
algorithm [48, 88] is extended from the Adatron algorithm [21]. Because the
kernel-Adatron algorithm does not consider the equality constraint, the opti-
mality for the bias term is not guaranteed. To compensate for this, in [69], a
method to augment an additional input is discussed. Mangasarian and Mu-
sicant [160] added b2/2 to the primal objective function of the L1 support
vector machine. Then the dual problem becomes as follows. Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj (H(xi,xj) + 1) (5.19)

subject to the constraints

166 5 Training Methods

0 ≤ αi ≤ C for i = 1, . . . , M. (5.20)

By this formulation, the linear constraint is vanished, and they applied
the successive overrelaxation method for training.

Sequential minimal optimization is a training method developed by Platt
[190]. It optimizes two data at a time. Thus it is equivalent to the decomposi-
tion method with |W | = 2 in Section 5.2. Vogt [262] extended SMO when the
bias term is not used, i.e., there is no equality constraint in the dual problem.
Instead of two variables, one variable is modified at a time. Kecman, Vogt, and
Huang [130] showed that this algorithm is equivalent to the kernel-Adatron
algorithm.

Some training algorithms are based on the geometrical properties of sup-
port vectors [132, 196, 203, 261]. Roobaert [203] proposed the direct SVM in
which the optimal separating hyperplane is determined in a geometrical way.
Initially, we find two nearest points of opposite classes and determine the hy-
perplane so that it contains the center of the two points and is orthogonal to
the line connecting these points (see Fig. 5.5 (a)). Then we find the point that
violates separation the most with respect to this hyperplane and rotate the
hyperplane so that it goes through the center of the point and the initial point
with the opposite class (see Fig. 5.5 (b)). According to the algorithm, without
any proper explanation, the weight vector is updated so that the correction is
orthogonal to the previous updates. The algorithm is extended to the feature
space, again without an elaborate explanation.

x1

x2

0
x1

x2

0

c1
c1

c2

(a) (b)

Fig. 5.5. Training by direct SVM: (a) Initialization of a hyperplane. (b) Modification
of the hyperplane by the point that violates separation the most

Assuming that the problem is linearly separable in the feature space,
Keerthi, Shevade, Bhattacharyya, and Murthy [132] showed the equivalence of
training a support vector machine with finding the minimum distance between

5.5 Primal-Dual Interior-Point Methods 167

the two convex hulls for the two classes and derived an improved algorithm
for finding the minimum distance.

Navia-Vázquez, Pérez-Cruz, Artés-Rodŕiguez, and Figueiras-Vidal [177]
proposed an iterative least squares training algorithm. They first transform
the objective function for the input space given by (2.41) into

Q =
1
2

‖w‖2 −
M∑

i = 1

a2
i

(
yi − (wT x + b)2

)
+

M∑
i = 1

ξi (C − βi − αi), (5.21)

where ai are weights given by

ai =
(

αi yi

yi − (wT xi + b)

)1/2

=
(

αi

1 − yi (wT xi + b)

)1/2

=
(

αi

ξi

)1/2

. (5.22)

Assuming αi, βi, and ξi are constant, Q given by (5.21) is a square function
of w and b. Thus by the least squares method we obtain w and b. Then using
these w and b, we renew αi, βi, and ξi considering the inequality constraints.
This procedure is iterated until the solution converges. Because this method is
based on the primal problem, the extension to the feature space with an infi-
nite dimension is not straightforward. Navia-Vázquez et al. proposed reducing
the dimension by the kernel PCA and applying the preceding method.

5.5 Primal-Dual Interior-Point Methods

In training support vector machines, usually the primal-dual interior-point
method is combined with the decomposition technique. In the following, first
we briefly summarize the primal-dual interior-point method for linear pro-
gramming based on [255, 272] and then we summarize the primal-dual interior-
point method for quadratic programming. Last, we evaluate characteristics of
support vector machine training by the primal-dual interior-point method
combined with the decomposition technique.

5.5.1 Primal-Dual Interior-Point Methods for Linear
Programming

Consider the following linear programming problem. Minimize

cT x (5.23)

subject to

168 5 Training Methods

Ax ≥ b, x ≥ 0, (5.24)

where A is an n × m matrix, x and c are m-dimensional vectors, and b is
an n-dimensional vector. Here, x ≥ 0 means that all the elements of x are
nonnegative.

Consider that this problem is a primal problem. Then the dual problem
of (5.23) and (5.24) is given as follows [63, 255]. Maximize

bT y (5.25)

subject to
AT y ≤ c, y ≥ 0, (5.26)

where y is an n-dimensional dual variable vector.
Now consider the following linear programming problem with equality con-

straints. Minimize
cT x (5.27)

subject to
Ax = b, x ≥ 0, (5.28)

where A is an n × m matrix, x and c are m-dimensional vectors, and b is an
n-dimensional vector.

Because the first equation in (5.28) is equivalent to(
A

−A

)
x ≥

(
b

−b

)
, (5.29)

the dual problem of (5.27) and (5.28) is given as follows. Maximize(
bT − bT

)
Y (5.30)

subject to (
AT − AT

)
Y ≤ c, Y ≥ 0, (5.31)

where Y is the (2 n)-dimensional dual variable vector. Now we define

Y =
(

y+

y−

)
, y+ ≥ 0, y− ≥ 0, y = y+ − y−. (5.32)

Then the dual problem of (5.27) and (5.28) is given as follows. Maximize

bT y (5.33)

subject to
AT y + z = c, z ≥ 0, (5.34)

where z is the m-dimensional slack variable vector. Here we must notice that
the elements of y need not be nonnegative.

5.5 Primal-Dual Interior-Point Methods 169

The solution that satisfies the constraints is called the feasible solution.
It is known that for feasible solutions x for (5.27) and (5.28) and (y, z) for
(5.33) and (5.34),

cT x ≥ bT y (5.35)

is satisfied. The difference of the objective functions cT x − bT y is called
the duality gap. It can be proved that if the primal solution has the optimal
solution, the dual problem also has the optimal solution and the duality gap
is zero. Namely, the strict equality holds in (5.35).

Then if the primal problem has the optimal solution,

xT z = xT (c − AT y)
= xT c − bT y

= 0 (5.36)

is satisfied. Because xi ≥ 0 and zi ≥ 0, (5.36) is equivalent to

xi zi = 0 for i = 1, . . . , m. (5.37)

This is called the complementarity condition.
Then if x and (y, z) satisfy the equality constraints for the primal and dual

problems, respectively, and (5.37) is satisfied, x and (y, z) are the optimal
solutions. Namely, solving the primal or dual problem is equivalent to solving

Ax = b,

AT y + z = c, (5.38)
xi zi = 0, xi ≥ 0, zi ≥ 0 for i = 1, . . . , m.

This problem is called the primal-dual problem. In solving the primal-dual
problem by the interior-point methods, the complementarity condition is
changed to

xi zi = µ for i = 1, . . . , m, (5.39)

where µ ≥ 0, and the value of µ is decreased to zero in solving the problem.
The locus of the solutions when µ is decreased to zero is called the central
path.

The primal-dual problem can be obtained by introducing the barrier (ob-
jective) function [255, pp. 277–85]. Consider the primal problem given by
(5.27) and (5.28). We change the inequality constraints xi ≥ 0 to log xi and
subtract them from the objective function:

cT x − µ

m∑
i=1

log xi (5.40)

where µ ≥ 0. Because − log xi is finite for positive xi and approaches positive
infinity as xi approaches 0, we can eliminate the inequality constraints. We

170 5 Training Methods

call this the barrier function because log xi works as a barrier and the solution
cannot go into the infeasible region defined by the inequality constraints xi <
0. We then introduce the Lagrange multipliers y = (y1, . . . , yn)T :

L(x,β) = cT x − µ

m∑
i=1

log xi − yT (Ax − b). (5.41)

The optimality conditions satisfy

∂L(x,y)
∂x

= c − µ

⎛
⎜⎝

1/x1 0
. . .

0 1/xn

⎞
⎟⎠− AT y = 0; (5.42)

∂L(x,y)
∂y

= Ax − b = 0. (5.43)

By defining xi zi = µ for j = 1, . . . , m, (5.42) becomes

AT y + z = c. (5.44)

Thus, the primal-dual problem is obtained.
Primal-dual interior-point methods are classified according to whether a

solution satisfies the constraints xi ≥ 0, zi ≥ 0 at every iteration step, into
feasible and infeasible methods. The solution at each iteration step is gener-
ated by potential reduction methods, path-following methods, and predictor-
corrector methods [272]. In the following we will discuss the path-following
method [255].

We write the primal-dual interior-point method in a matrix form:

Ax = b,

AT y + z = c, (5.45)
X Z e = µ e,

where x > 0, z > 0, X = diag(x1, . . . , xm), Z = diag(z1, . . . , zm), e is an
m-dimensional vector, and e = (1, . . . , 1)T . Here x and z are positive vectors
because of positive µ.

In the path-following method, starting from the feasible solution (x,y, z)
and positive µ, we alternately calculate the corrections of (x,y, z) and esti-
mation of µ, and we stop calculations when the solution reaches the optimal
solution.

For the given (x,y, z) and µ, we calculate the corrections of (x,y, z),
(∆x, ∆y, ∆z), by Newton’s method:

A ∆x = b − Ax,

AT ∆y + ∆z = c − AT y − z, (5.46)
Z ∆x + X ∆z = µ e − X Z e.

5.5 Primal-Dual Interior-Point Methods 171

Assuming that A is nonsingular, we can solve (5.46) for (∆x, ∆y, ∆z).
However, it is not guaranteed that the calculated corrections will satisfy the
positive constraints on x and z. Thus, introducing the parameter θ (≤ 1), we
determine the maximum value of θ, which satisfies:

x + θ∆x ≥ 0, (5.47)
z + θ∆z ≥ 0. (5.48)

Then we set

θ ← min(r θ, 1), (5.49)
x ← x + θ ∆x, (5.50)
y ← y + θ ∆y, (5.51)
z ← z + θ ∆z, (5.52)

where r is smaller than but close to 1 to guarantee that x and z are positive
vectors.

Because current µ is estimated by µ = xi zi for i = 1, . . . , m, we update
the value of µ by

µ =
zT x
m

δ, (5.53)

where 1 > δ > 0 and zT x/m is the average estimated value of µ.
We stop calculation if elements of x or y increase indefinitely or if the

complementarity conditions are satisfied. Namely, zT x is within a specified
value.

5.5.2 Primal-Dual Interior-Point Methods for Quadratic
Programming

Consider the following quadratic programming problem. Minimize

cT x +
1
2
xT H x (5.54)

subject to
Ax = b, xi ≥ 0 for i = 1, . . . , m, (5.55)

where H is an m × m symmetric, positive semidefinite matrix, A is an n ×
m matrix with rank n, x and c are m-dimensional vectors, and b is an n-
dimensional vector. Let this be a primal problem.

The dual problem of (5.54) and (5.55) is given as follows. Maximize

bT y − 1
2
xT H x (5.56)

subject to1

1If the inequality constraint Ax ≥ b is used, y needs to be a nonnegative vector.

172 5 Training Methods

AT y − H x + z = c, xi ≥ 0, zi ≥ 0 for i = 1 . . . , m, (5.57)

where y is the n-dimensional dual variable vector and z is the n-dimensional
slack variable vector.

If x is the optimal solution for the primal problem and (x,y, z) is the
optimal solution for the dual problem, the following conditions are satisfied:

Ax = b,

AT y − H x + z = c, (5.58)
xi zi = 0, xi ≥ 0, zi ≥ 0 for i = 1, . . . , m.

This is called the primal-dual problem. If (x,y, z) is the solution, x is the
optimal solution of the primal problem and (y, z) is the optimal solution of
the dual problem.

Because a primal-dual problem of quadratic programming is similar to a
primal-dual problem of linear programming, there is not much difference in
solving linear programming and quadratic programming problems by primal-
dual interior-point methods.

Now derive the optimality conditions of the L1 support vector machine.
Training of the L1 support vector machine is given as follows. Minimize

Q(α) = −
M∑

i = 1

αi +
1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (5.59)

subject to the constraints

M∑
i = 1

yi αi = 0, (5.60)

C ≥ αi ≥ 0 for i = 1, . . . , M. (5.61)

Here we multiplied (2.61) by the minus sign to make the problem a minimiza-
tion problem. Introducing slack variables βi (i = 1, . . . , M), we convert the
inequality constraints (5.61) into equality constraints:

αi + βi = C, αi ≥ 0, βi ≥ 0 for i = 1, . . . , M. (5.62)

Then the dual problem of the problem given by (5.59), (5.60), and (5.62)
is given as follows. Maximize

C

M∑
i = 1

δi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (5.63)

subject to the constraints

5.5 Primal-Dual Interior-Point Methods 173

δi + yi δM+1 −
M∑

j = 1

yi yj αjH(xi,xj) + zi = −1

for i = 1, . . . , M, (5.64)
δi + zM+i = 0 for i = 1, . . . , M, (5.65)

where δ = (δ1, . . . , δM+1)T , δ corresponds to y in (5.57), and z = (z1, . . . ,
z2M)T .

Substituting δi = −zM+i obtained from (5.65) into (5.64), we obtain

yi δM+1 −
M∑

j = 1

yi yj αjH(xi,xj) + zi − zM+i = −1

for i = 1, . . . , M. (5.66)

Then the optimality conditions for the L1 support vector machine are
given as follows:

M∑
i = 1

yi αi = 0, (5.67)

yi δM+1 −
M∑

j = 1

yi yj αjH(xi,xj) + zi − zM+i = −1

for i = 1, . . . , M, (5.68)
αi zi = 0 for i = 1, . . . , M, (5.69)

(C − αi) zM+i = 0 for i = 1, . . . , M, (5.70)
C ≥ αi ≥ 0, zi ≥ 0, zM+i ≥ 0 for i = 1, . . . , M. (5.71)

Similarly, we can obtain the optimality conditions for the L2 support vector
machine as follows:

M∑
i = 1

yi αi = 0, (5.72)

yi δ −
M∑

j = 1

yi yj αj

(
H(xi,xj) +

δij

C

)
+ zi = −1 for i = 1, . . . , M, (5.73)

αi zi = 0 for i = 1, . . . , M, (5.74)
αi ≥ 0, zi ≥ 0 for i = 1, . . . , M, (5.75)

where δ is a scalar variable associated with the linear constraint (5.72).

5.5.3 Performance Evaluation

Using the primal-dual interior-point method [254] combined with the variable
chunking technique, we compared L1 and L2 support vector machines from

174 5 Training Methods

the standpoint of training time and the generalization ability [138] using the
data sets listed in Table 1.1. We used one-against-all fuzzy SVMs to resolve
unclassifiable regions. We used linear, polynomial, and RBF kernels and set
some appropriate value to C. We ran the C program on an Athlon MP 2000+
personal computer.

We used the inexact and exact KKT conditions for working set selection.
For the inexact KKT conditions, we randomly selected F points that violated
the KKT conditions. For the exact KKT conditions, we set τ = 0.01. Initially,
we randomly selected the working set variables. Then we sorted F̃i and F̄i in
descending order of KKT violations. Then we alternately selected F points
from the top of F̃i and F̄i. We set the initial working set size of 50 and added
50 variables at a time. Because the initial working set was randomly selected,
for each training condition, we trained the SVM 100 times and calculated the
average values of the recognition rates and training time.

Table 5.3 shows the results for L1 and L2 SVMs using the inexact KKT
conditions. Numerals in parentheses show the recognition rates of the training
data when they were not 100 percent. The recognition rates of the test data
by the L2 SVM are higher than those by the L1 SVM for 16 cases out of
30. But those by the L1 SVM are higher for seven cases. Thus the L2 SVM
performed better than the L1 SVM, but the difference in recognition rates is
small.

For linear kernels, the maximum rank of the Hessian matrix for the L1
SVM is the number of input variables plus 1 (see Theorem 2.15). Thus, if
the working set size exceeds this value, the Hessian matrix for the L1 SVM is
positive semidefinite. But the Hessian matrix for L2 SVMs is always positive
definite. But this fact is not reflected in the training time. From the table,
excluding the iris data with nonlinear kernels, training of the L1 SVM was
faster than that of the L2 SVM.

Table 5.4 shows the results when the exact KKT conditions were used. Due
to the difference in the convergence tests, in some cases, the recognition rates
were slightly different from those in Table 5.3. Similar to the inexact KKT
conditions, in most cases, training time of the L1 SVM was shorter than that
of the L2 SVM.

Comparing Tables 5.3 and 5.4, training time of the L1 SVM by the inexact
KKT conditions was shorter than by the exact KKT conditions except for the
iris data. The tendency was the same for the L2 SVM.

To investigate why the exact KKT conditions were not always better than
the inexact KKT conditions, we studied the two-class problem that separates
Class 2 from the remaining classes for the blood cell data. We trained the L1
SVM with d = 3 and C = 2000.

Figure 5.6 shows the working set sizes of the inexact and exact KKT
conditions against the number of iterations. From the figure, the number of
iterations for the exact KKT conditions is smaller than that of the inexact
KKT conditions, but the working set size of the exact KKT conditions is
larger after the second iteration. This means that the inexact KKT conditions

5.5 Primal-Dual Interior-Point Methods 175

Table 5.3. Recognition rates and training time of L1 SVM and L2 SVM using
inexact KKT conditions

Data Kernel L1 SVM Time L2 SVM Time

(%) (s) (%) (s)

Iris Linear 96.00 (97.33) 0.02 97.33 (98.67) 0.04

(C = 5000) d2 94.67 0.01 94.67 0.01

d3 94.67 0.01 94.67 0.01

Numeral Linear 99.63 0.43 99.63 0.65

(C = 50) d2 99.39 0.40 99.63 0.62

d3 99.51 0.40 99.63 0.65

d4 99.51 0.45 99.63 0.65

Thyroid Linear 96.70 (97.56) 39 94.22 (94.67) 4008

(C = 10,000) d2 97.14 (98.75) 60 96.47 (98.38) 328

d3 97.49 (99.31) 27 97.26 (99.10) 151

d4 97.43 (99.34) 19 97.35 (99.23) 73

γ1 96.79 (99.02) 83 96.50 (99.02) 57

γ2 96.53 (99.36) 55 96.53 (99.34) 212

Blood cell Linear 87.23 (91.02) 214 87.87 (90.64) 872

(C = 2000) d2 92.97 (96.67) 27 93.52 (97.06) 44

d3 93.19 (98.22) 24 93.71 (98.55) 32

d4 92.68 (98.93) 24 93.42 (99.00) 30

γ1 93.35 (97.74) 27 93.74 (98.06) 42

γ2 93.42 (98.84) 26 93.58 (98.90) 38

Hiragana-50 Linear 92.60 (98.07) 129 93.28 (98.79) 253

(C = 5000) d2 99.24 109 99.24 137

d3 99.31 112 99.26 137

d4 99.33 112 99.28 147

Hiragana-105 Linear 97.03 (97.50) 806 97.45 (98.08) 1652

(C = 2000) d2 100 430 100 531

d3 100 434 100 532

Hiragana-13 Linear 96.37 (97.92) 360 96.43 (97.89) 705

(C = 5000) d2 99.27 (99.59) 295 99.35 (99.67) 333

d3 99.37 (99.64) 289 99.39 (99.69) 342

d4 99.34 (99.62) 290 99.37 (99.68) 368

176 5 Training Methods

Table 5.4. Recognition rates and training time of L1 SVM and L2 SVM using exact
KKT conditions

Data Kernel L1 SVM Time L2 SVM Time

(%) (s) (%) (s)

Iris Linear 96.00 (97.33) 0.03 97.33 (98.67) 0.03

(C = 5000) d2 94.67 0.01 94.67 0.01

d3 94.67 0.01 94.67 0.01

Numeral Linear 99.63 0.53 99.63 0.69

(C = 50) d2 99.39 0.52 99.63 0.69

d3 99.51 0.56 99.63 0.75

d4 99.51 0.59 99.63 0.79

Thyroid Linear 96.32 (97.40) 98 94.22 (94.70) 69,840

(C = 10,000) d2 97.14 (98.81) 162 96.44 (98.33) 1867

d3 97.52 (99.26) 69 97.08 (99.07) 363

d4 97.46 (99.34) 54 97.32 (99.23) 150

γ1 96.82 (99.02) 218 96.50 (99.02) 1362

γ2 96.53 (99.36) 170 96.53 (99.34) 410

Blood cell Linear 87.77 (91.41) 267 88.45(91.12) 4180

(C = 2000) d2 93.00 (96.74) 51 93.48(97.06) 49

d3 93.26 (98.22) 39 93.71(98.55) 37

d4 92.65 (98.93) 34 93.42(99.00) 34

γ1 93.35 (97.74) 42 93.74(98.06) 52

γ2 93.42 (98.84) 39 93.58(98.90) 41

Hiragana-50 Linear 92.58 (98.09) 187 93.34 (98.79) 366

(C = 5000) d2 99.24 124 99.24 135

d3 99.31 129 99.26 135

d4 99.33 129 99.28 146

Hiragana-105 Linear 97.04 (97.55) 1323 97.47 (98.10) 2063

(C = 2000) d2 100 508 100 527

d3 100 524 100 530

Hiragana-13 Linear 96.42 (97.93) 563 96.47 (97.89) 1121

(C = 5000) d2 99.26 (99.59) 356 99.37 (99.67) 364

d3 99.39 (99.64) 318 99.39 (99.69) 344

d4 99.34 (99.62) 335 99.39 (99.69) 367

5.5 Primal-Dual Interior-Point Methods 177

estimate the violating variables conservatively. Thus, with the smaller working
set size, training by the inexact KKT conditions was faster.

Figure 5.7 shows the training time of the inexact and exact KKT conditions
for the change of F , namely the number of variables added to the working set
W . For the inexact KKT conditions, training was fastest when 100 variables
were added, but for the exact KKT conditions, training was fastest when
20 variables were added. Because for the exact KKT conditions the training
time was not monotonic for the increase of the added variables, the exact
KKT conditions are less suitable as a variable selection strategy.

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20

Inexact KKT

Exact KKT

Number of iterations

W
or

ki
ng

 s
et

 s
iz

e

Fig. 5.6. Relationship between the working set size and number of iterations (d =
3, C = 2000)

According to the computer experiments, we have found that

1. training of L2 SVMs was not always faster than that of L1 SVMs,
2. the difference of the generalization abilities between the L1 and L2 SVMs

was small, and
3. training by the exact KKT conditions was not always faster than by the

inexact KKT conditions. This was due to the conservative estimation of
violating variables by the inexact KKT conditions.

178 5 Training Methods

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

Inexact KKT

Exact KKT

Number of the added variables

T
im

e
[s

]

Fig. 5.7. Relationship between the number of variables added and training time
(d = 3, C = 2000)

5.6 Steepest Ascent Methods

In the following, we discuss the training algorithm based on the steepest ascent
method [8]. The algorithm reduces to SMO when two data are optimized
simultaneously. Because it uses the Hessian matrix, it is a variant of Newton’s
method [31].

5.6.1 Training Algorithms

We decompose the set of variables {αi | i . . . , M} into a working set αW =
{αi | i ∈ W} and a fixed set αN = {αi | i ∈ N}, where W and N are the index
sets, W ∪ N = {1, . . . , M}, and W ∩ N = φ. Then fixing αN , we maximize

Q(αW) =
∑

i ∈ W

αi − 1
2

∑
i,j ∈ W

αi αj yi yj H(xi,xj)

−
∑

i ∈ W,
j ∈ N

αi αj yi yj H(xi,xj)

−1
2

∑
i,j ∈ N

αi αj yi yj H(xi,xj) +
∑
i ∈N

αi (5.76)

subject to the constraints

5.6 Steepest Ascent Methods 179∑
i ∈ W

yi αi = −
∑
i ∈ N

yi αi, 0 ≤ αi ≤ C for i ∈ W. (5.77)

Now consider solving the subprogram for αW . Solving the equality in
(5.77) for αs ∈ αW , we obtain

αs = −
M∑

i�=s,
i=1

ys yi αi. (5.78)

Substituting (5.78) into (5.76), we can eliminate the equality constraint.
Let αW ′ = {αi | i �= s, i ∈ W}. Now because Q(αW ′) is quadratic, we can
express the change of Q(αW ′), ∆Q(αW ′), as a function of the change of αW ′ ,
∆αW ′ , by

∆Q(αW ′) =
∂Q(αW ′)

∂αW ′
∆αW ′ +

1
2
∆αT

W ′
∂2Q(αW ′)

∂α2
W ′

∆αW ′ . (5.79)

Considering that

∂αs

∂αi
= −ys yi, (5.80)

we derive the partial derivatives of Q(αW ′) with respect to αi (i �= s, i ∈ W ′):

∂Q(αW ′)
∂αi

= 1 +
∂αs

∂αi
−

M∑
j=1

αj yi yj H(xi,xj)

−
M∑

j=1

αj ys yj
∂αs

∂αi
H(xs,xj)

= 1 − ys yi −
M∑

j=1

αj yi yj H(xi,xj)

+
M∑

j=1

αj yj yi H(xs,xj). (5.81)

Using (5.81), the second partial derivatives of Q(αW ′) with respect to αi

and αj (i, j �= s, i, j ∈ W ′) are

∂2Q(αW ′)
∂α2

i

= −H(xi,xi) + 2H(xi,xs) − H(xs,xs), (5.82)

∂2Q(αW ′)
∂αi∂αj

= yi yj (−H(xi,xj) + H(xi,xs) + H(xs,xj)

−H(xs,xs)) . (5.83)

From (2.59),

180 5 Training Methods

∂2Q(αW ′)
∂α2

W ′
= − (· · · yi(g(xi) − g(xs)) · · ·)T

× (· · · yj(g(xj) − g(xs)) · · ·) . (5.84)

Thus, if xi = xs (i, s ∈ W), ∂2Q(α)/∂α2
W ′ is singular. Therefore, we need to

avoid choosing xi that is the same as xs, if included. Because −∂2Q(α)/∂α2
W ′

is expressed by the product of a transposed matrix and the matrix, it is
positive semidefinite. Assuming that it is positive definite and neglecting the
bounds, ∆Q(αW ′) has the maximum at

∆αW ′ = −
(

∂2Q(αW ′)
∂α2

W ′

)−1
∂Q(αW ′)

∂αW ′
. (5.85)

Assume that αi (i = 1, . . . , M) satisfy (5.77). Then from (5.77) and (5.85),
we obtain the correction of αs:

∆αs = −
∑

i∈W ′
ys yi ∆αi. (5.86)

Now the correction of αW , ∆αW , is obtained by (5.85) and (5.86). For
αi (i ∈ W), if

αi = 0, ∆αi < 0, or (5.87)
αi = C, ∆αi > 0, (5.88)

we cannot modify αW , because this will violate the lower or upper bound. If
this happens, we delete these variables from the working set and repeat the
procedure for the reduced working set.

If (5.87) or (5.88) does not hold for any variable in the working set, we
can modify the variables. Let ∆α′

i be the maximum or minimum correction
of αi that is within the bounds. Then if αi + ∆αi < 0, ∆α′

i = −αi. And if
αi + ∆αi > C, ∆α′

i = C − αi. Otherwise ∆α′
i = ∆αi. Now we calculate

r = min
i∈W

∆α′
i

∆αi
, (5.89)

where 0 < r ≤ 1.
We modify αW by

αnew
W = αold

W + r ∆αW . (5.90)

It is clear that the obtained αnew
W satisfies the equality constraint. In addition,

Q(αnew
W) ≥ Q(αold

W) is satisfied.
If ∂2Q(αW ′)/∂α2

W ′ is singular, we can use the pseudo-inverse [96]. But
because the calculation is time-consuming, we delete the variables that cause
singularity from the working set, and if the number of reduced variables is
more than 1, do the procedure for the reduced working set.

5.6 Steepest Ascent Methods 181

Consider deleting the variables using the symmetric Cholesky factoriza-
tion in calculating (5.85). In factorizing the ith column of ∂2Q(αW ′)/∂α2

W ′ ,
if the value of the ith diagonal element of the lower triangular matrix is
smaller than the prescribed small value, we discard the ith column and row
of ∂2Q(αW ′)/∂α2

W ′ and proceed to the (i + 1)st column. To simplify this
procedure, in the following simulations, we stop factorization and delete the
variables corresponding to the ith to the (|W ′|)th diagonal elements.

Let V be the index set of support vector candidates. At the start of
training, V includes all the indices, i.e., V = {1, . . . , M}. Assume that the
maximum working set size |W |max is given. We change the working set size
according to the change of |V | as follows:

|W | =
{ |W |max for |V | ≥ |W |max,

max{2, |V |} for |V | < |W |max.
(5.91)

We call the corrections of all the variables αi (i ∈ V) one epoch of training.
At the beginning of a training epoch, we select one variable αi (i ∈ V) as αs

and set W = {i} and V = V −{i}. Then we randomly select (|W |−1) variables
αi (i ∈ V), where |W | is given by (5.91), and delete and add the associated
indices from V and to W , respectively. We calculate the variable vector αnew

W

and iterate the procedure until V is empty.
For each calculation of αnew

W , we check if

|r ∆αi| < εvar (5.92)

holds for all i (i ∈ W), where εvar is a tolerance of convergence for the
variables. At the end of a training epoch, we calculate the bias term bi for
αi (i ∈ W) that is within the bounds, i.e., 0 < αi < C by

bi = yi −
∑
j∈W

αj yj H(xj ,xi), (5.93)

and their average bave by

bave =
1

Nb

∑
i∈W,

0<αi<C

bi, (5.94)

where Nb is the number of αi (∈ V) that satisfies 0 < αi < C.
To accelerate training, for Nite consecutive iterations, where Nite is the

positive integer, we confine calculations within the support vector candidates
[190]. Namely, at the end of the training epoch we delete the index i with
αi = 0 from V , and proceed with training.

If this does not happen and (5.92) holds for all αW s in the training epoch
and if |bave − bi|

|bave| ≤ εb (5.95)

182 5 Training Methods

holds for all i (i ∈ V, 0 < αi < C), we check whether there is a new candidate
xi (i /∈ V) of support vectors that satisfy

yj

(∑
i∈V

αi yi H(xi,xj) + bave

)
< 1. (5.96)

If there is none, we stop training. Otherwise we add the indices to V and
proceed with training. At the end of every (Iite + 1)st training epoch, we
check (5.96) and add the support vector candidates if there are some.

To further speed training, we impose the following condition:

Q(n+1)(α) − Q(n)(α)
Q(n)(α)

≤ εq, (5.97)

where εq is a small positive parameter. If this criterion is applied at the early
stage of convergence, the calculation is terminated before the solution reaches
the optimal solution. Therefore, we apply the criterion after Nq (> 1) epoch
of training.

To reduce the number of calculations of H(xi,xj), we prepare an NM ×NM

matrix H for H(xi,xj). When we calculate H(xi,xj), where αi and αj are
support vector candidates, i.e., i, j ∈ V , we store it into H in a way similar
to how the cache memory does. Namely, if i = j, H(xi,xi) is not stored in H,
and the kth row and column of H are empty, we assign i to the kth column
(row) and store H(xi,xi) in Hkk. If i �= j, and i and j are not assigned, we
assign i and j to the empty columns (rows) k1 and k2, respectively, if they
exist, and store H(xi,xj) to Hk1k2 . If either of i and j is assigned already, we
assign the one that is not and store H(xi,xj) in H. When αi is deleted from
V and i is assigned to a column (row) of H, we clear the column (row). We
define the hit ratio of H by

Number of successful accesses
Total number of accesses

× 100(%), (5.98)

where a successful access means that H(xi,xj) is stored in H, and its calcu-
lation is not necessary.

5.6.2 Sequential Minimal Optimization

In the following, we discuss correction of variables for SMO, which is the
steepest ascent method with |W | = 2. We restate the optimization problem.
Maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (5.99)

subject to the constraints

5.6 Steepest Ascent Methods 183

M∑
i = 1

yi αi = 0, 0 ≤ αi ≤ C for i = 1, . . . , M. (5.100)

Solving the equality in (5.100) for αs, we get

αs = −
M∑

i �= s,
i = 1

ys yi αi. (5.101)

Substituting (5.101) into (5.100), we can eliminate the equality constraint.
Now because Q(α) is quadratic, we can express the change of Q(α), ∆Q(α),
for the change of αi, ∆αi, by

∆Q(α) =
∂Q(α)

∂αi
∆αi +

1
2

∂2Q(α)
∂α2

i

(∆αi)2. (5.102)

Considering that
∂αs

∂αi
= −ys yi, (5.103)

we derive the partial derivatives of Q(α) with respect to αi (i �= s, i =
1, . . . , M),

∂Q(α)
∂αi

= 1 +
∂αs

∂αi
−

M∑
j=1

αj yi yj H(xi,xj)

−
M∑

j=1

αj ys yj
∂αs

∂αi
H(xi,xj)

= 1 − ys yi −
M∑

j=1

αj yi yj H(xi,xj)

+
M∑

j=1

αj yj yi H(xs,xj). (5.104)

Using (5.104), the second partial derivatives of Q(α) with respect to αi

(i �= s, i = 1, . . . , M) are

∂2Q(α)
∂α2

i

= −H(xi,xi) + 2H(xi,xs) − H(xs,xs). (5.105)

From (2.59),

∂2Q(α)
∂α2

i

= −H(xi,xi) + 2H(xi,xs) − H(xs,xs)

= −g(xi)T g(xs) + 2g(xi)T g(xi) − g(xs)T g(xs)

= − (g(xi) − g(xs))
T (g(xi) − g(xs)) ≤ 0. (5.106)

184 5 Training Methods

Thus, if ∂2Q(α)/∂α2
i < 0, ∆Q(α) has the maximum at

∆αi = −
∂Q(α)

∂αi

∂2Q(α)
∂α2

i

. (5.107)

As initial values, we set αi = 0 so that they satisfy (5.100). For i �= s, i =
1, . . . , M , if ∂2Q(α)/∂α2

i > 0, we modify αi by

αnew
i = αold

i + r ∆αi, (5.108)

where 0 < r ≤ 1 and is determined so that αnew
i and αnew

s satisfy the upper
and lower bounds (see Fig. 5.8).

Then αs is given as follows:

1. if yi �= ys,
αnew

s = αold
s + r ∆αi; (5.109)

2. if yi = ys,
αnew

s = αold
s − r ∆αi. (5.110)

Because Q(α) is monotonic for the change of αi + r ∆αi (r ∈ (0, 1]), by this
modification the resultant Q(α) is nondecreasing. Thus the steepest ascent is
guaranteed.

αi

αs

0

C

(a)

αi

αs

0

C

(b)

Fig. 5.8. Satisfying the upper and lower bounds: (a) yi �= ys. Because αi violates
the constraint more than αs, r is determined so that αnew

i = 0, i.e., r ∆αi = −αold
i .

(b) yi = ys. Because αs violates the constraint, r is adjusted so that αnew
s = C , i.e.,

r ∆αi = αold
i − C

5.6.3 Training of L2 Soft-Margin Support Vector Machines

The steepest ascent method obtained for the L1 soft-margin support vector
machine can be extended to the L2 soft-margin support vector machine by
replacing H(xi,xj) with H(xi,xj) + δij/C except for calculating the deci-
sion function (see Section 2.4). In the following performance evaluation, we
compare these two support vector machine architectures.

5.6 Steepest Ascent Methods 185

5.6.4 Performance Evaluation

We used a Sun UltraSPARC-IIi (335MHz) workstation to train fuzzy pairwise
support vector machines for the thyroid, blood cell, and hiragana data sets
listed in Table 1.1. The input ranges were scaled into [−1, 1]. We used poly-
nomial kernels and RBF kernels. The parameters used for simulations for L1
and L2 SVMs are as follows: C = 5000, εb = 10−2, εvar = 10−6, εq = 10−7,
Nite = 10, and Nq = 50. Because for the thyroid data and blood cell data,
Nq = 50 was too small, we set as follows: for the thyroid data except for d = 4
and the blood cell data, we set Nq = 100; for the thyroid data with d = 4, we
set Nq = 600.

To compare the training time with the quadratic programming technique,
we used the software developed by London University2 [210]. We used the
primal-dual interior-point method (PDIP) as the optimization technique. The
working set size was set to be 50.

Table 5.5 shows the results for the different training methods. In the table,
columns PDIP, SMO, SAM (steepest ascent method for L1 SVM), L2 SMO
(for L2 SVM), and L2 SAM (for L2 SVM) show the training time and in
parentheses the speedup ratios to SMO. For the thyroid data and blood cell
data with linear kernels, training by the L2 SAM is much faster than that by
the SAM. But except for this, there is not much difference between SAM and
the L2 SAM. Because the implementation of SMO is different from that in
[190], only comparison of the training time with that of SAM is meaningful.
In [190], SMO was shown to be faster than the projected conjugate gradient
method with the working set size of 500. But, comparing PDIP and SMO,
PDIP outperformed SMO for all the data sets evaluated. For PDIP also the
working set size affected the training time considerably. For instance, without
the decomposition technique, the training time by PDIP for blood cell data
with d = 4 was 936 seconds. Thus the optimal selection of the working set
size for the primal-dual interior-point method is important.

Comparing SMO and SAM, there is not much difference for the hiragana
data but for the thyroid and blood cell data training by SAM is much faster
for most cases. SAM is comparable with PDIP for hiragana data, but for
thyroid data and blood cell data with d = 1, PDIP is much faster. L2 SAM
is comparable to PDIP for the blood cell data, but for the thyroid data with
d = 1, PDIP is faster.

According to the simulations, there is not much difference between L1
SVMs and L2 SVMs. The difference occurred for the thyroid data and blood
cell data with d = 1. For larger |W |, training by L2 SVMs was faster. This
is because the thyroid data and blood cell data were difficult to classify with
d = 1 and L2 SVMs exploited the positive definiteness of the Hessian matrix.

2http://svm.cs.rhbnc.ac.uk/

186 5 Training Methods

Table 5.5. Performance comparison of training methods

Data Parm PDIP SMO SAM L2 SMO L2 SAM

(s) (s) (s) (s) (s)

Thyroid Linear 38 (40) 1531 (1) 931 (1.6) 3650 (0.42) 154 (9.9)

d4 14 (145) 2032 (1) 109 (19) 2362 (0.86) 134 (15)

γ10 108 (37) 4044 (1) 424 (9.5) 4309 (0.94) 390 (10)

Blood cell Linear 20 (23) 463 (1) 150 (3.1) 932 (0.50) 28 (17)

d4 19 (18) 338 (1) 31 (11) 353 (0.96) 31 (11)

γ10 185 (1.3) 238 (1) 165 (1.4) 235 (1.0) 165 (1.4)

Hiragana-50 d2 143 (1.4) 202 (1) 117 (1.7) 215 (0.94) 124 (1.6)

γ0.1 288 (1.1) 321 (1) 194 (1.6) 333 (0.96) 199 (1.6)

Hiragana-105 d2 318 (2.1) 671 (1) 394 (1.7) 698 (0.96) 414 (1.6)

γ0.1 1889 (1.2) 2262 (1) 1479 (1.5) 2316 (0.98) 1525 (1.5)

Hiragana-13 d2 99 (1.4) 136 (1) 93 (1.5) 147 (0.93) 104 (1.3)

γ1 181 (1.8) 325 (1) 190 (1.7) 333 (0.98) 195 (1.7)

5.7 Training of Linear Programming Support Vector
Machines

In this section we discuss training of LP support vector machines by linear
programming combined with the decomposition technique.

5.7.1 Primal-Dual Problems

Letting αi = α+
i − α−

i and b = b+ − b−, where α+
i ≥ 0, α−

i ≥ 0, b+ ≥ 0, b− ≥
0, in (4.46) and (4.47) we obtain the following LP support vector machine.
Minimize

Q(α+,α−, ξ) =
M∑
i=1

(α+
i + α−

i + C ξi) (5.111)

subject to

yj

(
M∑
i=1

(α+
i − α−

i)H(xj ,xi) + b+ − b−
)

+ ξj ≥ 1

for j = 1, . . . , M. (5.112)

Let (5.111) and (5.112) be a primal problem. Because there are M inequal-
ity constraints, the number of dual variables is M . Then the dual problem is
given as follows. Maximize

5.7 Training of Linear Programming Support Vector Machines 187

M∑
i=1

zi (5.113)

subject to

M∑
i=1

yi H(xi,xj) zi ≤ 1 for j = 1, . . . , M, (5.114)

M∑
i=1

yi H(xi,xj) zi ≥ −1 for j = 1, . . . , M, (5.115)

M∑
i=1

yi zi = 0, (5.116)

C ≥ zi ≥ 0 for j = 1, . . . , M, (5.117)

where zi (i = 1, . . . , M) are dual variables.
For the primal problem, for α+

i = α−
i = 0, ξi = 1 (i = 1, . . . , M), and b+ =

b− = 0, the inequality constraints are satisfied. Also for the dual problem,
for zi = 0 (i = 1, . . . , M), the inequality and equality constraints are satisfied.
Thus, the primal and dual problems have the optimal solutions and the values
of the objective functions at the optimal solutions are the same.

Introducing the slack variables ui (i = 1, . . . , M) into (5.112), we obtain

yj

(
M∑
i=1

(α+
i − α−

i)H(xj ,xi) + b+ − b−
)

+ ξj = 1 + uj , uj ≥ 0

for j = 1, . . . , M. (5.118)

Likewise, introducing the slack variables v+
i , v−

i , and w+
i (i = 1, . . . , M)

into (5.114), (5.115), and (5.117), respectively, we obtain

M∑
i=1

yi H(xi,xj) zi + v+
j = 1 for j = 1, . . . , M, (5.119)

M∑
i=1

yi H(xi,xj) zi = v−
j − 1 for j = 1, . . . , M, (5.120)

zi + wi = C, v+
i ≥ 0 v−

i ≥ 0, wi ≥ 0 for i = 1, . . . , M. (5.121)

The complementarity conditions, which give the optimality of the solution
are given by

α+
i v+

i = 0 for i = 1, . . . , M, (5.122)
α−

i v−
i = 0 for i = 1, . . . , M, (5.123)

ξi wi = 0 for i = 1, . . . , M, (5.124)
ui zi = 0 for i = 1, . . . , M. (5.125)

188 5 Training Methods

Therefore, if

αi = α+
i − α−

i = 0, (5.126)
ξi = 0, (5.127)
zi = 0, (5.128)

it is not necessary to check v+
i , v−

i , wi, and ui. Thus, the training data xi that
satisfy (5.126) to (5.128) do not affect the solution even if they are removed.
Namely, for the training data set {x, . . . ,xM}, the smallest set of data that
does not satisfy (5.126) to (5.128) constitutes a set of “support vectors,” in
that it forms the smallest subset of the training data set that gives the same
solution as that of the original training data set. This means that, unlike
conventional support vector machines, only retaining the training data xi

associated with the nonzero αi does not guarantee giving the same optimal
solution with that given by the original training data set.

5.7.2 Training by Decomposition

If the number of training data is very large, decomposition of the problem
becomes a necessity. In such a situation, we can combine either the simplex
method or the primal-dual interior-point method with the decomposition tech-
nique. If we use the simplex method, we need only to solve the primal or dual
problem. This is because if we solve one, the other is also solved [63, 255].

The complementarity conditions given by (5.122) to (5.125) play an im-
portant role in decomposition; for the variables in the fixed set, we detect the
variables that do not satisfy the complementarity conditions. If they exist, we
add them to the working set and delete the variables that satisfy (5.126) to
(5.128) and iterate the training.

6

Feature Selection and Extraction

Conventional classifiers do not have a mechanism to control class boundaries.
Thus if the number of input variables is large compared to the number of
training data, class boundaries may not overlap. In such a situation, the gen-
eralization ability of the conventional classifiers may not be good. Therefore,
to improve the generalization ability, we usually generate a small set of fea-
tures from the original input variables by either feature selection or feature
extraction.

Because support vector machines directly determine the class boundaries
by training, the generalization ability does not degrade greatly even when
the number of input variables is large. Vapnik [257] even claims that feature
selection or feature extraction is not necessary for support vector machines.
But it is important, even using support vector machines.

In this chapter, we first survey feature selection methods using support
vector machines and show how feature selection affects generalization ability
of a support vector machine for some benchmark data sets. Then we discuss
one of the feature extraction methods, kernel discriminant analysis, which
extracts, in the feature space, a feature that maximizes the distance between
class centers and minimizes the sum of class variances.

6.1 Procedure for Feature Selection

In selecting features, we first need to determine some appropriate selection
criterion. A recognition rate can be a selection criterion. But because training
a classifier takes time, we use a more simplified criterion. One of the criteria
is the exception ratios that approximate the overlap between classes [3, pp.
217–23]. In the following section, we discuss the criteria that are suitable for
support vector machines.

The forward or backward selection method using a selection criterion is
widely used. In backward selection, we start from all the features and delete
one feature at a time, which deteriorates the selection criterion the least. We

190 6 Feature Selection and Extraction

delete features until the selection criterion reaches a specified value. In forward
selection, we start from an empty set of features and add one feature at a time,
which improves the selection criterion the most. We iterate this procedure until
the selection criterion reaches a specified value. Because forward or backward
selection is slow, we may add or delete more than one feature at a time based
on feature ranking, or we may combine backward and forward selection.

Because these selection methods are local optimization techniques, global
optimality of feature selection is not guaranteed. Usually, backward selection is
slower but rather is stabler in selecting optimal features than forward selection
[3]. If a selection criterion is monotonic for deletion or addition of a feature,
we can use optimization techniques such as the branch-and-bound technique.

Another way is to combine training and features selection; Because train-
ing of support vector machines results in solving a quadratic optimization
problem, feature selection can be done by modifying the objective function.

6.2 Feature Selection Using Support Vector Machines

In this section, we discuss some of the feature selection methods based on
support vector machines. The methods are classified into two: backward or
forward feature selection based on some selection criterion [79, 105, 172] and
SVM-based feature selection, in which a feature selection criterion is added
to the objective function [37] or forward feature selection is done by changing
the margin parameter [41, 42].

6.2.1 Backward or Forward Feature Selection

Selection Criteria

The selection criterion used in the literature is, except for some cases [79, 172],
the margin [34, 105, 188, 197]. In addition, in most cases, a linear support vec-
tor machine is used. In [266], selection of features in support vector machines
with polynomial kernels is discussed, but this is for deletion of feature space
variables, not input variables.

Assume that a classification problem is linearly separable in the feature
space. Then training the support vector machine with the associated kernel
results in maximizing the margin δ or minimizing ‖w‖.

Now we show that the margin is nonincreasing for the deletion of the
input variable so long as the classification problem is separable in the feature
space for the reduced input variables. Namely, the margin remains the same or
decreases. First, we show that the margin is nonincreasing when the problem
is linearly separable in the input space. Figure 6.1 shows the two-dimensional
case where the margin decreases if x2 is deleted.

6.2 Feature Selection Using Support Vector Machines 191

x1

x2

0

Class 2

Class 1

Fig. 6.1. Decrease of the margin by deleting x2

Figure 6.2 shows the two-dimensional case where the optimal separating
line is parallel to x2. In this case, x2 does not contribute in classification, and
the margin remains the same even if x2 is deleted.

x1

x2

0

Class 2

Class 1

Fig. 6.2. The margin remains the same by deleting x2

In general, if the optimal separating hyperplane is not parallel to an input
variable, the deletion of the variable results in the decrease in the margin. But
if the optimal hyperplane is parallel to input variables, the margin does not
change for the deletion of these variables.

This is paraphrased as follows. If some elements of w are zero, the deletion
of the associated input variables does not change the optimal hyperplane for
the remaining variables. But if we delete variables associated with nonzero
elements, the optimal solution changes. Thus the magnitude of the margin
decreases.

192 6 Feature Selection and Extraction

We can extend this discussion to the feature space. If an input variable is
deleted, some of the variables that span the feature space are deleted. Thus,
the margin is nonincreasing for the deletion of input variables.

Therefore, in this situation, it is natural to delete input variables as far
as possible under the constraint that the classification problem is linearly
separable for the reduced input variables and under the constraint that

δ − δ′

δ
< ε, (6.1)

where δ′ is the margin for the reduced variables and ε is a small positive value.

Feature Ranking

The change of ‖w‖2 for the deletion of the kth input variable needs to be
calculated by training the SVM with the deleted input variable. But this is
time-consuming. Thus, we consider how to choose the deletion candidate from
the input variables. For the linear kernel, if w2

k = 0, the optimal hyperplane is
the same for the deletion of the kth input variable. Even if w2

k is not zero, if
the value is small, the deletion of the kth input variable does not affect very
much for the optimal hyperplane. Thus, we can choose the input variable with
the minimum w2

k. This is the same measure as that proposed in [105].
For the kernel other than the linear kernel, multiple variables in the feature

space are deleted for the deletion of an input variable. In this case, we also
choose the input variable with the minimum square sum of weights associated
with the input variable. The square sum of weights in the feature space that
correspond to the kth input variable, ∆k‖w‖2, is estimated by

∆(k)‖w‖2 =
∑

i,j∈S

αi yiαj yj (H(xi,xj) − H(x(k)
i ,x(k)

j)), (6.2)

where x(k) is the vector with the kth element of x set to zero.
If more than one ∆(k)‖w‖2 are zero, we can safely delete the associated

variables, but this may be rare. We may choose plural variables with ∆(k)‖w‖2

smaller than a threshold. But how to determine the threshold is difficult.
In [34], three random variables are added to a regression problem, and the
average value of the three weights associated with the variables is used for the
threshold.

Backward Feature Selection

In backward feature selection we first train the support vector machine using
all the input variables. Then we delete the input variable ranked first in the
feature ranking and train the support vector machine with the reduced input
variables. We iterate the deletion procedure until the stopping criterion is
satisfied.

The procedure of backward feature selection is as follows:

6.2 Feature Selection Using Support Vector Machines 193

1. Train the SVM using all the input variables. Let the margin be δ0.
2. Let ∆(k)‖w‖2 be minimum. Then delete the kth input variable. (To speed

up the deletion procedure, we may delete more than one variable by fea-
ture ranking.)

3. Train the SVM with the reduced input variables. If nonseparable or (δ0 −
δc)/δ0 < ε, terminate the algorithm, where δc is a current margin and
0 < ε < 1. Otherwise, go to Step 2.

We can extend this method for forward selection if we calculate the margin
change for the variable addition by training, which is time-consuming. But
without training, estimation of the change is difficult.

6.2.2 Support Vector Machine–Based Feature Selection

Instead of backward or forward feature selection, feature selection can be done
while training by reformulating training [37, 99, 188, 266, 268]. The idea of
feature selection developed by Bradley and Mangasarian [37] is quite similar
to that by Guyon, Weston, Barnhill, and Vapnik [105]. In the former, feature
selection is done by minimizing the classification error and the number of
nonzero components of w. The problem is formulated as follows. Minimize

(1 − λ)
1
M

M∑
i=1

ξi + λ

n∑
i=1

w∗
i (6.3)

subject to

yi (wT xi + b) ≥ 1 − ξi for i = 1, . . . , M, (6.4)

where λ (1 > λ ≥ 0) is a regularization parameter and

w∗
i =

{ 1 for wi �= 0,
0 otherwise.

(6.5)

In (6.3), the second term minimizes the number of nonzero components of
w. The variables with zero wi are regarded as redundant.

This optimization problem is written by introducing a positive vector v.
Minimize

(1 − λ)
1
M

M∑
i=1

ξi + λ

n∑
i=1

v∗
i (6.6)

subject to

yi (wT xi + b) ≥ 1 − ξi for i = 1, . . . , M, (6.7)
−vi ≤ wi ≤ vi for i = 1, . . . , n, (6.8)

where v∗
i is defined as in (6.5).

Because v∗
i is a step function, it is approximated by

194 6 Feature Selection and Extraction

1 − exp(−γ vi), (6.9)

where γ is a positive parameter. Then the optimization problem is solved by
concave minimization technique [37].

Let the objective function be

Q(w, ξ) = λ

m∑
i=1

|wi| +
M∑
i=1

ξ2
2 , (6.10)

where λ = 1/C is the regularization parameter. For λ = ∞, wi = 0, which
means that all the input features are not used. Brown’s idea [41, 42] is to
decrease the value of λ toward zero and select the classifier with the optimal
features. For λ ∈ [0,∞), the set of support vectors changes at finite points (see
Section 2.6.2) and so does the set of input features. To facilitate searching the
points where the set of support vectors changes, Brown proposed an iterative
linear programming technique.

6.2.3 Feature Selection by Cross-Validation

Usually we select a feature selection criterion other than the recognition rate,
because it is time-consuming to evaluate the recognition rate. But if the num-
ber of training data is small, the recognition rate can be used as a feature
selection criterion.1

In the following we discuss backward feature selection estimating the gen-
eralization ability of the classifier by cross-validation of the training data.

Let the initial set of selected features be Fm, where m is the number
of input variables, and the recognition rate of the validation set by cross-
validation be Rm.

We delete the ith (i = 1, . . . , m) feature temporally from Fm and estimate
the generalization ability by cross-validation. Let the recognition rate of the
validation set be Rm

i . We check whether the maximum Rm
i (i ∈ {1, . . . , m})

is larger than or equal to Rm:

max
i=1,...,m

Rm
i ≥ Rm. (6.11)

If (6.11) is not satisfied, we assume that the deletion of one feature results in
degrading the generalization ability. Thus we cannot delete any feature from
the original set of features Fm.

Assume that (6.11) is satisfied for k. Then we set

Fm−1 = Fm − {k}. (6.12)

1Professor N. Kasabov’s lecture at Kobe University on June 1, 2004, showed the
usefulness of this criterion.

6.3 Feature Extraction 195

Namely, we assume that the set of features Fm−1 can realize the same gen-
eralization ability as Fm. To speed up selecting the features from Fm−1, we
consider that the features that satisfy

Rm
i < Rm (6.13)

are indispensable for classification and thus they cannot be deleted. Thus, we
set the set of features that are candidates for deletion

Sm−1 = {i |Rm
i ≥ Rm, i �= k}. (6.14)

If Sm−1 is empty, we stop deleting the feature. If it is not empty, we iterate
the preceding backward selection procedure.

We evaluated the method using some of the data sets listed in Table 1.1.
We estimated the generalization ability by five-fold cross-validation for a given
kernel changing the value of C. Table 6.1 shows the results. The “Deleted”
column lists the features deleted according to the algorithm and the “Vali-
dation” and “Test” columns show the recognition rates of the validation sets
and test data sets, respectively. If the recognition rate of the training data is
not 100 percent, it is shown in parentheses. For the iris and numeral data sets
we used a polynomial kernel with degree 2 and for the blood cell and thyroid
data sets we used polynomial kernels with degree 4. For the iris and numeral
data sets, the recognition rates of the test data with deleted input variables
are equal to or higher than those with all the input variables. For the blood
cell data, the recognition rates with deleted input variables are equal to or
lower, but the differences are small.

For the thyroid data set, many redundant features are included. Based on
the analysis of class regions approximated by ellipsoids, five features, i.e., the
third, eighth, eleventh, seventeenth, and twenty-first features, were selected
as important features by the forward feature selection method [3]. Thus we
started from these five features. The “Deleted” column in the table lists the
remaining features. Three features, i.e., the third, eighth, and seventeenth
were selected, and the recognition rate for the test data was higher than that
for using all the features.

6.3 Feature Extraction

Principal component analysis is widely used for feature extraction. As a vari-
ant of PCA, kernel PCA, which will be discussed in Section 8.2, has been
gaining wide acceptance. In [216], the simulation study showed that the com-
bination of KPCA and the linear support vector machine gave better gen-
eralization ability than the nonlinear support vector machine. In [204, 205],
KPCA is combined with least squares, which is a variant of kernel least squares
discussed in Section 8.1.

196 6 Feature Selection and Extraction

Table 6.1. Feature selection by cross-validation. For the thyroid data, the “Deleted”
column lists the remaining features

Data Deleted C Validation Test

(%) (%)

Iris None 5000 94.67 93.33

3 500 96.00 (99.00) 96.00 (98.67)

3, 1 5000 94.67 96.00

3, 4 5000 94.67 93.33

Numeral None 1 99.51 (99.97) 99.63

4 1 99.75 99.63

4, 10 1 99.75 99.76

4, 10, 3 1 99.63 99.63

4, 10, 3, 12 1 99.51 (99.94) 99.76

Blood cell None 1 93.77 (96.23) 93.23 (96.51)

1 1 94.38 (96.65) 93.06 (96.51)

1, 13 1 94.51 (96.56) 93.03 (96.84)

1, 13, 8 1 94.35 (96.41) 93.23 (96.67)

1, 13, 8, 10 1 94.45 (96.48) 93.16 (96.71)

1, 13, 8, 10, 9 1 94.54 (96.67) 92.97 (96.38)

1, 13, 8, 10, 9, 6 1 94.25 (96.00) 92.45 (95.93)

Thyroid None 105 97.96 97.93

(3, 8, 11, 17, 21) 105 98.44 (99.85) 98.37 (99.81)

(3, 8, 11, 21) 105 98.52 (99.77) 98.45 (99.81)

(3, 8, 17) 104 98.52 (99.76) 98.48 (99.81)

Principal component analysis does not use class information. Thus, the
first principal component is not necessarily useful for class separation. On
the other hand, linear discriminant analysis, defined for a two-class problem,
finds the component that maximally separates two classes [77, pp. 118–21].
Likewise, kernel discriminant analysis finds the component that maximally
separates two classes in the feature space [26, 166], [215, pp. 457–68]. It is
extended to multiclass problems, and there are also variants [146, 184]. In the
following, we discuss kernel discriminant analysis for two-class problems.

Let the sets of m-dimensional data belonging to Class i (i = 1, 2) be
{xi

1, . . . ,x
i
Mi

}, where Mi is the number of data belonging to Class i, and data
x be mapped into the l-dimensional feature space by the mapping function

6.3 Feature Extraction 197

g(x). Now we find the l-dimensional vector w in which the two classes are
separated maximally in the direction of w in the feature space.

The projection of g(x) on w is wT g(x)/‖w‖. In the following we assume
that ‖w‖ = 1, but this is not necessary. We find such w that maximizes the
difference of the centers and minimizes the variances of the projected data.

The square difference of the centers of the projected data, d2, is

d2 = (wT (c1 − c2))2

= wT (c1 − c2) (c1 − c2)T w, (6.15)

where ci are the centers of class i data:

ci =
1

Mi

Mi∑
j=1

g(xi
j)

= (g(xi
1), . . . ,g(xi

Mi
))

⎛
⎜⎝

1
Mi

...
1

Mi

⎞
⎟⎠ for i = 1, 2. (6.16)

We define
QB = (c1 − c2) (c1 − c2)T (6.17)

and call QB the between-class scatter matrix.
The variances of the projected data, s2

i , are

s2
i = wT Qi w for i = 1, 2, (6.18)

where

Qi =
1

Mi

Mi∑
j=1

(g(xi
j) − ci) (g(xi

j) − ci)T

=
1

Mi

M∑
j=1

g(xi
j)g(xi

j)
T − ci cT

i

=
1

Mi
(g(xi

1), . . . ,g(xi
Mi

)) (IMi
− 1Mi

)

⎛
⎜⎝

gT (xi
1)

...
gT (xi

Mi
)

⎞
⎟⎠ for i = 1, 2. (6.19)

Here, IMi
is the Mi ×Mi unit matrix and 1Mi

is the Mi ×Mi matrix with all
elements being 1/Mi. We define

QW = Q1 + Q2 (6.20)

and call QW the within-class scatter matrix.
Now, we want to maximize

198 6 Feature Selection and Extraction

J(w) =
d2

s2
1 + s2

2

=
wT QB w
wT QW w

, (6.21)

but because w, QB , and QW are defined in the feature space, we need
to use kernel tricks. Assume that a set of M ′ vectors {g(y1), . . . ,g(yM ′)}
spans the space generated by {g(x1

1), . . . ,g(x1
M1

),g(x2
1), . . . ,g(x2

M2
)}, where

{y1, . . . ,yM ′} ⊂ {x1
1, . . . ,x

1
M1

,x2
1, . . . ,x

2
M2

} and M ′ ≤ M1 + M2. Then w is
expressed as

w = (g(y1), . . . ,g(yM ′)) α, (6.22)

where α = (α1, . . . , αM ′)T and α1, . . . , αM ′ are scalars. Substituting (6.22)
into (6.21), we obtain

J(α) =
αT KB α

αT KW α
, (6.23)

where

KB = (kB1 − kB2) (kB1 − kB2)
T , (6.24)

kBi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
Mi

Mi∑
j=1

H(y1,xi
j)

· · ·
1

Mi

Mi∑
j=1

H(yM ′ ,xi
j)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for i = 1, 2, (6.25)

KW = KW1 + KW2 , (6.26)

KWi
=

1
Mi

⎛
⎝ H(y1,xi

1) · · ·H(y1,xi
Mi

)
· · ·

H(yM ′ ,xi
1) · · ·H(yM ′ ,xi

Mi
)

⎞
⎠ (IMi

− 1Mi
)

×
⎛
⎝ H(y1,xi

1) · · ·H(y1,xi
Mi

)
· · ·

H(yM ′ ,xi
1) · · ·H(yM ′ ,xi

Mi
)

⎞
⎠

T

for i = 1, 2. (6.27)

Taking the partial derivative of (6.23) with respect to w and equating
the resulting equation to zero, we obtain the following generalized eigenvalue
problem:

KB α = λKW α, (6.28)

where λ is a generalized eigenvalue.
Substituting

KW α = kB1 − kB2 (6.29)

into the left-hand side of (6.28), we obtain

6.3 Feature Extraction 199

(αT KW α) KW α. (6.30)

Thus, by letting λ = αT KW α, (6.29) is a solution of (6.28).
Because KW1 and KW2 are positive semidefinite, KW is positive

semidefinite. If KW is positive definite, α is given by

α = K−1
W (kB1 − kB2). (6.31)

Even if we choose independent vectors y1, . . . ,yM ′ , for nonlinear kernels,
KW may be positive semidefinite, i.e., singular. One way to overcome singu-
larity is to add positive values to the diagonal elements [166]:

α = (KW + εI)−1 (kB1 − kB2), (6.32)

where ε is a small positive parameter. Another way is to use the pseudo-
inverse:

α = K+
W (kB1 − kB2), (6.33)

which gives the solution in a least squares sense.

7

Clustering

Unlike multilayer neural networks, support vector machines can be formulated
for one-class problems. This technique is called domain description or one-
class classification and is applied to clustering and detection of outliers for
both pattern classification and function approximation [158]. In this chapter,
we first discuss domain description, in which a region for a single class is
approximated by a hypersphere in the feature space. Then we discuss an
extension of domain description to clustering.

7.1 Domain Description

In pattern classification, we consider more than one class. And, if data with
only one class are available as training data, we cannot use multilayer neu-
ral networks. In such a situation, if we approximate the class region by some
method and if we test whether new data are outside the region, we can detect
outliers. The approximation of the class region is called the domain descrip-
tion. Tax and Duin [246, 247] extended the support vector method to domain
description. In the following we discuss their method.

We consider approximating the class region by the minimum hypersphere
with center a = (a1, . . . , aM)T and radius R in the input space, excluding
the outliers. Let xi, (i = 1, . . . , M) be data belonging to one class. Then the
problem is to minimize

Qp(R,a, ξ) = R2 + C

M∑
i=1

ξi (7.1)

subject to

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 for i = 1, . . . , M, (7.2)

where ξ = (ξ1, . . . , ξM)T is the slack variable vector and C determines the
trade-off between the hypersphere volume and outliers.

202 7 Clustering

Introducing the nonnegative Lagrange multipliers αi and γi, we obtain

Qd(R,a,α, ξ,γ) = R2 + C

M∑
i=1

ξi

−
M∑
i=1

αi (R2 + ξi − xT
i xi + 2aT xi − aT a)

−
M∑
i=1

γi ξi, (7.3)

where α = (α1, . . . , αM)T and γ = (γ1, . . . , γM)T .
Setting the partial derivatives of Qd(R,a,α, ξ,γ) with respect to R, a,

and ξ to zero, we obtain

M∑
i

αi = 1, (7.4)

a =
M∑
i=1

αi xi, (7.5)

C − αi − γi = 0 for i = 1, . . . , M. (7.6)

Substituting (7.4) to (7.6) into (7.3) gives the following maximization problem.
Maximize

Qd(α) =
M∑
i=1

αi xT
i xi −

M∑
i,j=1

αi αj xT
i xj (7.7)

subject to

M∑
i

αi = 1, (7.8)

0 ≤ αi ≤ C for i = 1, . . . , M. (7.9)

The KKT conditions are as follows:

αi (R2 + ξi − xT
i xi + 2aT xi − aT a) = 0 for i = 1, . . . , M, (7.10)

γi ξi = 0 for i = 1, . . . , M. (7.11)

If 0 < αi < C, from (7.6), γi �= 0. Thus ξi = 0 and

R = ‖xi − a‖, (7.12)

where a is given by (7.5) and xi is a support vector. Namely, the unbounded
support vectors form the surface of the hypersphere.

7.1 Domain Description 203

If αi = C, γi = 0. Thus if ξi > 0, the bounded support vectors are outside
of the hypersphere and thus are outliers. Notice that, from (7.4), 1 ≥ αi ≥ 0 is
satisfied. And because at least two support vectors are necessary for defining
a hypersphere, if C ≥ 1, there are no bounded support vectors.

Thus the unknown datum x is inside the hypersphere if

xT x − 2
∑
i∈S

αixT xi +
∑
i∈S,
j∈S

αi αj xT
i xj ≤ R2, (7.13)

where S is the set of support vectors.
If we want to determine the minimum volume of the hypersphere in the

feature space, we change (7.2) to

‖g(xi) − a‖2 ≤ R2 + ξi, ξi ≥ 0 for i = 1, . . . , M, (7.14)

where g(x) is the mapping function that maps x into the l-dimensional feature
space and a is the center of the hypersphere in the feature space.

Introducing the Lagrange multipliers αi and γi, we obtain

Qd(R,a,α, ξ,γ) = R2 + C

M∑
i=1

ξi

−
M∑
i=1

αi (R2 + ξi − H(xi,xi) + 2aT g(xi) − aT a)

−
M∑
i=1

γi ξi, (7.15)

where H(xi,xi) = gT (xi)g(xi).
Setting the partial derivatives of Qd(R,a,α, ξ,γ) with respect to R, a,

and ξ to zero, we obtain

M∑
i

αi = 1, (7.16)

a =
M∑
i=1

αi g(xi), (7.17)

C − αi − γi = 0 for i = 1, . . . , M. (7.18)

Thus substituting (7.16) to (7.18) into (7.15) gives the following maximization
problem:1 Maximize

1When kernels, such as RBF kernels, that depend only on x − x′ are used, the
linear term in (7.19) is constant from (7.20). Then it is shown that the problem is
equivalent to maximizing the margin in separating data from the origin [215, pp.
230–4].

204 7 Clustering

Qd(α) =
M∑
i=1

αiH(xi,xi) −
M∑

i,j=1

αi αjH(xi,xj) (7.19)

subject to

M∑
i

αi = 1, (7.20)

0 ≤ αi ≤ C for i = 1, . . . , M. (7.21)

For the unbounded support vectors xi,

R = ‖g(xi) − a‖, (7.22)

where a is given by (7.17). Thus the center is not implicitly expressed by ker-
nels. The bounded support vectors with ξi > 0 are outside of the hypersphere
and thus are outliers.

The unknown datum x is inside the hypersphere if

H(x,x) − 2
∑
i∈S

αiH(x,xi) +
∑
i∈S,
j∈S

αi αjH(xi,xj) ≤ R2, (7.23)

where S is the set of support vectors.
According to the simulation with polynomial kernels, an approximated

region mapped into the input space included a redundant space that did not
include training data. But the use of RBF kernels showed better results [246].
To reduce the redundant space, Tax and Juszczak [248] used the kernel PCA
to rescale the data in the feature space to the unit variance before one-class
classification.

Example 7.1. In a one-dimensional problem, assume that we have two data:
x1 = −1 and x2 = 1. For linear kernels, the one-class classification is to
maximize

Qd(α) = α1 + α2 − (α1 − α2)2 (7.24)

subject to
α1 + α2 = 1, 0 ≤ α1 ≤ C, 0 ≤ α2 ≤ C. (7.25)

Let C > 1. Then the optimum solution is given by α1 = α2 = 0.5, and
a = 0 and R = 1. Thus, the hypersphere is given by x2 = 1, which is the
minimum hypersphere that includes the two data in the input space.

For the polynomial kernel with degree 2, the one-class classification is to
maximize

Qd(α) = 4α1 + 4α2 − 4(α2
1 + α2

2) (7.26)

subject to
α1 + α2 = 1, 0 ≤ α1 ≤ C, 0 ≤ α2 ≤ C. (7.27)

7.1 Domain Description 205

Let C > 1. Then the optimum solution is given by α1 = α2 = 0.5. The
center vector is a = 0.5 (g(x1) + g(x2)) = (1, 0, 1)T for the coordinates of
(x2,

√
2x, 1)T , R =

√
2, and the hypersphere is given by x4 = 1, which is

equivalent to x2 = 1.

Yuan and Casasent [280] proposed a support vector representation machine
(SVRM), using the fact that with the RBF kernel data are on the surface
of the unit hypersphere centered at the origin of the feature space because
gT (x)g(x) = exp(−γ ‖x−x‖2) = 1. In the SVRM, we determine vector h, in
the feature space with the minimum Euclidean norm, that satisfies hT g(xi) ≥
1 for i = 1, . . . , M . Minimize

Q′
p(h) =

1
2
‖h‖2 (7.28)

subject to

hT g(xi) ≥ 1 for i = 1, . . . , M. (7.29)

The dimension of the feature space associated with the RBF kernel is
infinite, but for simplicity the example of an SVRM shown in Fig. 7.1 assumes
a two-dimensional feature space. In the figure, let training data lie on the arc
between g(x1) and g(x2) and θ be the angle between g(x1) (org(x2)) and h.
Then

hT g(x1) = ‖h‖ cos θ = 1, hT g(x2) = 1 (7.30)

must be satisfied. Therefore x1 and x2 are support vectors and g(x1) (org(x2))
and h − g(x1) (orh − g(x2)) are orthogonal.

Any datum x on the arc satisfies hT g(x) ≥ 1, and for any datum x that
is not, hT g(x) < 1.

A soft-margin SVRM is given as follows. Minimize

Q′
p(h, ξ) =

1
2
‖h‖2 + C

M∑
i=1

ξi (7.31)

subject to

hT g(xi) ≥ 1 − ξi, ξi ≥ 0 for i = 1, . . . , M, (7.32)

where ξi (≥ 0) are slack variables associated with xi, ξ = (ξ1, . . . , ξM)T , and
C is the margin parameter.

Introducing the nonnegative Lagrange multipliers αi and βi, we obtain

Q′
d(h, ξ,α,β) =

1
2

‖h‖2 + C

M∑
i = 1

ξi

−
M∑

i = 1

αi

(
hT g(xi) − 1 + ξi

)−
M∑

i = 1

βi ξi, (7.33)

206 7 Clustering

h

θ

: Support vectors

θ
g(x1)

g(x2)

Fig. 7.1. Concept of an SVRM

where α = (α1, . . . , αM)T and β = (β1, . . . , βM)T .
The following conditions must be satisfied for the optimal solution:

∂Q(h, ξ,α,β)
∂h

= 0, (7.34)

∂Q(h, ξ,α,β)
∂ξ

= 0. (7.35)

Using (7.33), (7.34) and (7.35) reduce, respectively, to

h =
M∑

i = 1

αi g(xi), (7.36)

αi + βi = C, αi ≥ 0, βi ≥ 0 for i = 1, . . . , M. (7.37)

Thus substituting (7.36) and (7.37) into (7.33), we obtain the following dual
problem. Maximize

Q′
d(α) =

M∑
i

αi − 1
2

M∑
i,j=1

αi αj H(xi,xj) (7.38)

subject to

0 ≤ αi ≤ C for i = 1, . . . , M, (7.39)

where H(xi,xj) = exp(−γ ‖xi − xj‖).
This problem is very similar to an L1 support vector machine. In the L1

support vector machine, deleting the equality constraint that corresponds to
optimization of the bias term and setting yi = 1 for i = 1, . . . , M , we obtain
the associated SVRM.

7.2 Extension to Clustering 207

7.2 Extension to Clustering

Conventional clustering methods such as k-means clustering algorithm and
fuzzy c-means clustering algorithms can be extended to feature space [95, 168].

The domain description discussed in Section 7.1 defines the region of data
by a hypersphere in the feature space. The hypersphere in the feature space
corresponds to clustered regions in the input space. Thus domain description
can be used for clustering (Ben-Hur, Horn, Siegelmann, and Vapnik [28]). In
the following we discuss how domain description can be extended to clustering.

We assume that there are no outliers. Namely, all the data are in or on the
hypersphere. The problem is how to determine the clusters in the input space.
Using Fig. 7.2, we explain the idea discussed in [28]. In the figure, two clusters
are generated in the input space by approximating the region of data by a
hypersphere in the feature space. The insides of the two regions correspond
to the inside of the hypersphere in the feature space. In the figure, Data 1, 2,
and 3 are in Cluster 1 but Datum 4 is in Cluster 2. If we move along the line
segment connecting Data 1 and 4 from Datum 1, we go out of Cluster 1 and
into Cluster 2. Namely, in the feature space, we go out of and then back to
the hypersphere. Therefore, if part of the line segment connecting two data
is out of the hypersphere, the two data may belong to different clusters. But
this is not always true, as the line segment connecting Data 1 and 3 shows.

1

3

2

0 x1

x2

4

Cluster 1

Cluster 2

Fig. 7.2. Cluster assignment

To avoid this, for all the data pairs we check if the associated line seg-
ments are in the hypersphere. If a line segment is included, we consider that
there is a path between the two data. Then we generate sets of data that are
connected by paths. Each set constitutes a cluster. In [28] the line segments
are considered to be in the hypersphere if sampled data on the line segments
satisfy (7.23).

208 7 Clustering

In Fig. 7.2, there are paths between Data 1 and 2 and between Data 2 and
3. But there is no path connecting Datum 4 and the remaining data. Thus
Data 1 to 3 constitute a cluster, and so does Datum 4.

If cluster regions in the input space are convex, by the preceding method,
all the data in a cluster are selected and no other data are selected. But if a
cluster region is concave, data in a cluster may be separated into more than
one set. For example, in Fig. 7.2 if part of the line segment connecting Data
2 and 3 is out of the cluster region, the line segment does not form a path.
Thus if there are only Data 1 to 3, they are divided into two sets: {1, 2} and
{3}.

If C ≥ 1, no outliers, namely no bounded support vectors, are detected.
Thus, if clusters are considered to be well separated and no outliers are con-
sidered to be included, we set C = 1. If clusters are considered to overlap or
outliers are considered to be included, we set C smaller than 1. From (7.4)
and 0 ≤ αi ≤ C,

|B| ≤ 1/C, (7.40)

where |B| is the number of bounded support vectors.
According to this procedure for defining clusters, bounded support vectors

do not belong to any cluster. But if bounded support vectors are caused by
overlapping of clusters, we may include them to the nearest clusters [28].

The most crucial part of clustering is to check the paths for all pairs of
data. To speed this up, in [28], only the pairs of data with one datum being
an unbounded support vector are checked. But if many support vectors are
bounded, this may lead to false cluster generation. To avoid this situation,
Yang, Estivill-Castro, and Chalup [276] proposed using a proximity graph, in
which a node corresponds to a datum, to model the nearness of data and to
check pairs of data that are directly connected in the graph. They used the
following proximity graphs:

1. a complete graph, in which all the data are connected;
2. a support vector graph, in which at least one of the data connected to a

branch is an unbounded support vector;
3. the Delaunay diagram, which is the dual of the Voronoi diagram and which

is composed of adjacent triangles whose edges are the data;
4. the minimum spanning tree with the minimum sum of distances; and
5. k nearest neighbors, in which a datum is connected to k nearest data.

According to the experiments, Delaunay diagrams and k nearest neighbors
with k greater than 4 showed comparable clustering performance with com-
plete graphs with much faster clustering.

In [24], training data are spatially chunked to speed training and to opti-
mize RBF parameters. In [62], to speed training, an initial ball is generated
by training a one-class classifier for randomly selected data and the ball is
iteratively updated, adding the data outside the ball.

8

Kernel-Based Methods

Inspired by the success of support vector machines, to improve generalization
and classification abilities, conventional pattern classification techniques have
been extended to incorporate maximizing margins and mapping to a feature
space. For example, perceptron algorithms [67, 86, 93, 147], neural networks
(Chapter 9), and fuzzy systems (Chapter 10) have incorporated maximizing
margins and/or mapping to a feature space.

There are numerous conventional techniques that are extended to be used
in the high-dimensional feature space, e.g., kernel least squares [27, 206], ker-
nel principal component analysis [215, 216, 230], kernel discriminant analysis
[215, pp. 457–68], the kernel Mahalanobis distance [206], the kernel k-means
clustering algorithm, the kernel self-organizing feature map, and other kernel-
based methods [159, 184, 282].

In this chapter, we discuss some of the kernel-based methods: kernel least
squares, kernel principal component analysis, and the kernel Mahalanobis dis-
tance.

8.1 Kernel Least Squares

8.1.1 Algorithm

Least squares methods in the input space can be readily extended to the
feature space using kernel techniques [27, 206].

Assume that we have training input-output pairs {xi, yi} for i = 1, . . . , M .
We approximate the output y by

y = aT g(x), (8.1)

where g(x) is the mapping function that maps x into the l-dimensional feature
space and a is the l-dimensional vector. Without loss of generality, we can
assume that the last element of g(x) is 1. By this assumption, we need not
add a constant term in (8.1).

210 8 Kernel-Based Methods

We determine vector a so that

J =
M∑
i=1

(
yi − aT g(xi)

)2
(8.2)

is minimized.
Without loss of generality we can assume that the set of M ′ vectors,

{g(x1), . . . , g(xM ′)} (M ′ ≤ M), spans the space generated by {g(x1), . . . ,
g(xM)}. Then, because a is in the space spanned by {g(x1), . . . ,g(xM ′)}, a
is expressed by

a =
M ′∑
i=1

αi g(xi), (8.3)

where αi are parameters. Then (8.1) becomes

y =
M ′∑
i=1

αi gT (xi)g(x)

=
M ′∑
i=1

αi H(x,xi), (8.4)

where H(x,xi) = gT (x)g(xi) = gT (xi)g(x).
When RBF kernels are used, (8.4) is equivalent to radial basis function

neural networks with xi (i = 1, . . . , M ′) being the centers of radial bases [27].
Substituting (8.3) into (8.2), we obtain

J =
1
2

M∑
i=1

⎛
⎝yi −

M ′∑
j=1

αjH(xi,xj)

⎞
⎠

2

=
1
2

(y − Hα)T (y − Hα), (8.5)

where y = (y1, . . . , yM)T , α = (α1, . . . , αM ′)T , H is an M × M ′ matrix, and
H = {H(xi,xj)} (i = 1, . . . , M, j = 1, . . . , M ′).

Taking the partial derivative of J with respect to α and setting it to zero,
we obtain

∂J

∂α
= −HT (y − Hα) = 0. (8.6)

Because {g(x1), . . . ,g(xM ′)} are linearly independent, the rank of H is M ′.
Thus, HT H is positive definite. Then, from (8.6),

α = (HT H)−1HT y. (8.7)

If {g(x1), . . . ,g(xM)} are linearly independent, H is a square matrix and
positive definite. Then α is given by

8.1 Kernel Least Squares 211

α = H−1 y. (8.8)

If we use RBF kernels, M ′ = M and H is positive definite. Thus kernel
least squares are solved by (8.8). But in general M ′ < M . Thus, to use (8.7)
we need to select independent {g(x1), . . . ,g(xM ′)}. Otherwise, we need to
solve

α = H+ y, (8.9)

where H is an M × M matrix and H+ is the pseudo-inverse of H. If H is
singular, H+ is calculated by singular value decomposition (see Section B.2).
This is a time-consuming task, and in estimating y we need to use all M
training data. Thus it is favorable to select independent vectors in advance.

Baudat and Anouar [27] proposed selecting independent vectors by se-
quential forward selection, in which starting from an empty set, a vector that
maximizes the objective function is selected. Cawley and Talbot [53] proposed
speeding up basis selection by using the matrix inversion lemma, deleting
data that make the kernel matrix singular when added to the kernel matrix,
sampling of the candidate basis vectors, and stochastic approximation of the
objective function for basis vector selection.

Here, we consider using the Cholesky factorization to select independent
vectors [83]. Let H be positive definite. Then H is decomposed by the Cholesky
factorization into

H = L LT , (8.10)

where L is the regular lower triangular matrix and each element Lij is given
by

Lop =
Hop −

p−1∑
n = 1

Lpn Lon

Lpp
for o = 1, . . . , M, p = 1, . . . , o − 1, (8.11)

Laa =

√√√√Haa −
a−1∑
n = 1

L2
an for a = 1, 2, . . . , M. (8.12)

Here, Hij = H(xi,xj).
Then during the Cholesky factorization, if the diagonal element is smaller

than the prescribed value η (> 0):

Haa −
a−1∑
n = 1

L2
an ≤ η, (8.13)

we delete the associated row and column and continue decomposing the ma-
trix. The training data that are not deleted in the Cholesky factorization are
independent. If no training data are deleted, the training data are all inde-
pendent in the feature space.

After factorization, α is obtained by solving

212 8 Kernel-Based Methods

L c = y, (8.14)
LT α = c, (8.15)

where c is an M ′-dimensional vector.
Selection of the value of η influences the generalization ability. For instance,

for RBF kernels, a small value of η may result in selecting all the training data.
Thus, there is the optimal value of η, which is determined by model selection.

If we use linear kernels, kernel least squares result in conventional least
squares. The advantage of using kernel least squares is that we avoid using
singular value decomposition (see Section B.2), when the dimension of the
space spanned by the training data is lower than that of the input space.

In the kernel least squares, the regularization term is not included. Thus
overfitting may occur. To avoid overfitting, in [80] the regularized least squares
methods were proposed, in which the solution is obtained by solving

(H + D) α = y, (8.16)

where H is the kernel matrix and D is a diagonal matrix associated with
the regularization term. Because H + D is positive definite, (8.16) is solved
without singular value decomposition. According to [281], the generalization
abilities of support vector machines and regularized least squares methods are
shown to be comparable for several benchmark data sets. But, unlike support
vector machines, the solution is not sparse. This is the same situation with
the least squares support vector machines, and the techniques for increasing
sparsity discussed in Section 4.1 can be used.

8.1.2 Performance Evaluation

We evaluate the kernel least squares method using pattern classification and
function approximation problems listed in Table 1.1 [170].

We measured the training time of our method using a personal computer
(Xeon 2.4GHz dual, memory 4GB) with the Linux operating system.

For an n-class classification problem, we determined n hyperplanes, with
each hyperplane separating one class from the others, setting the target value
of 1 for the class and −1 for the remaining classes. In classification, we clas-
sified unknown datum to the class with the maximum output. This is a one-
against-all classification strategy. When RBF kernels are used, the kernel least
squares are equivalent to radial basis function neural networks.

Because the generalization ability depends on the value of η, we de-
termined the value by five-fold cross-validation for linear kernels, polyno-
mial kernels with d = [2, 3, 4], and RBF kernels with γ = [1, 5, 10] with
η = [10−8, 10−7, . . . , 10−2], and we selected the value with the maximum
recognition rate.

If the same recognition rate was obtained for the validation data set, we
broke the tie by selecting the simplest structure as follows:

8.1 Kernel Least Squares 213

1. Select the kernel and parameters with the highest recognition rate for the
training data.

2. Select polynomial kernels from polynomial and RBF kernels.
3. Select the polynomial kernel with the smallest degree from polynomial

kernels.
4. Select the RBF kernel with the smallest value of γ from RBF kernels.
5. Select the largest value of η.

Table 8.1 shows the cross-validation results for the blood cell data. In the
table, the “Test,” “Train.,” and “Valid.” columns list the recognition rates
of the test data, training data, and cross-validation data, respectively. The
“Num.” and “Time” columns list the number of selected independent data
and training and classification time, respectively. By selecting the value of η by
cross-validation, the number of independent data was reduced to less than one-
fifteenth of that of the training data. In addition, training and classification
time was short.

Because the recognition rate of the cross-validation data with RBF kernels
with γ = 5 was the highest, we selected RBF kernels with γ = 5 and η = 10−4.
In this case the recognition rate of the test data was the second highest.

Table 8.1. Recognition rates for the blood cell data

Kernel η Test Train. Valid. Num. Time

(%) (%) (%) (s)

Linear 10−3 67.71 69.78 74.15 10 25

d2 10−5 90.29 91.12 91.44 49 28

d3 10−5 91.16 93.51 92.37 79 30

d4 10−5 90.74 92.64 91.15 70 30

γ1 10−5 82.90 84.99 92.37 119 37

γ5 10−4 93.03 95.96 93.86 253 58

γ10 10−3 93.32 95.87 93.63 227 52

Table 8.2 lists the cross-validation results for the Mackey-Glass data. Un-
der the same conditions as pattern classification, we performed five-fold cross-
validation for each kernel. Approximation performance was measured by the
normalized root-mean-square error (NRMSE). Because the Mackey-Glass data
did not include noise, NRMSEs for the training and test data did not vary
very much. Because the NRMSE of the cross-validation data with RBF ker-
nels with γ = 10 was the smallest, we selected RBF kernels with γ = 10 and
η = 10−4. For this case, the independent data were reduced to less than half

214 8 Kernel-Based Methods

Table 8.2. Approximation errors of the Mackey-Glass data

Kernel η Test Train. Valid. Num. Time

(NRMSE) (NRMSE) (NRMSE) (s)

Linear 10−2 0.0586 0.0584 0.0603 1 0

d2 10−7 0.0096 0.0098 0.0138 15 12

d3 10−5 0.0062 0.0063 0.0093 15 0

d4 10−5 0.0063 0.0064 0.0064 15 0

γ1 10−5 0.0026 0.0026 0.0022 51 1

γ5 10−4 0.0021 0.0021 0.0011 122 1

γ10 10−4 0.0015 0.0015 0.0008 190 1

of the training data and the training time was very short. If the training time
was shorter than 0.5 second, it is listed as 0 in the “Time” column.

Table 8.3 lists the results for the benchmark data sets. For comparison, for
pattern classification problems we also list the recognition rates of the one-
against-all fuzzy L1 SVM in Tables 3.2 and 3.3. For function approximation
we used the performance of the SVM listed in Tables 11.6 and 11.8. Higher
or equal recognition rates (lower or equal approximation errors) are shown
in boldface. For the water purification data set, the “Test,” “Train.,” and

Table 8.3. Recognition performance

Data Kernel η Test Train. Num. Time SVM

(%) (%) (s) (%)

Iris d2 10−5 96.00 100 15 0 94.67

Numeral d3 10−5 99.15 100 199 2 99.27

Thyroid γ5 10−4 93.99 95.97 471 163 97.93

Blood cell γ5 10−4 93.03 95.96 253 57 93.16

Hiragana-50 γ10 10−4 99.13 100 3511 1641 99.26

Hiragana-13 γ10 10−4 99.44 99.61 860 1715 99.63

Hiragana-105 γ10 10−3 100 100 7197 92495 100

Mackey Glass γ10 10−4 0.0021 0.0021 190 1 0.0031

Water Purif. γ0.1 10−4 1.082 0.722 62 0 1.032

1: NRMSE, 2: mg/l

8.2 Kernel Principal Component Analysis 215

“SVM” columns list the average errors in mg/l. And for this data set, the
cross-validation for the RBF kernels, we used γ = [0.1, 0.5, 1.0].

Except for the hiragana-50 and hiragana-105 data sets, by five-fold cross-
validation, small numbers of data were selected and training time was rela-
tively short.

Except for the thyroid data, the generalization abilities of the kernel least
squares and the SVM are comparable. For the thyroid test data, the recogni-
tion rate of the kernel least squares is much lower than that of the L1 SVM.
This is the same tendency as that of the least squares SVM.

8.2 Kernel Principal Component Analysis

Principal component analysis (PCA) is a well-known feature extraction
method, in which the principal components of the input vector relative to
the mean vector are extracted by orthogonal transformation. Similarly kernel
PCA extracts principal components in the feature space [215, 216, 230]. We
call them kernel principal components.

Unlike the approach discussed in [216], here we consider that the mean of
the data is nonzero from the beginning. Consider extracting kernel principal
components of a set of data {x1, . . . , xM}. The covariance matrix Q of the
data in the feature space is calculated by

Q =
1
M

M∑
i=1

(g(xi) − c) (g(xi) − c)T

=
1
M

M∑
i=1

g(xi)gT (xi) − c cT , (8.17)

where g(x) is the mapping function that maps x into the l-dimensional feature
space and c is the mean vector of the mapped training data and is calculated
by

c =
1
M

M∑
i=1

g(xi)

= (g(x1), . . . ,g(xM))

⎛
⎜⎝

1
M
...
1
M

⎞
⎟⎠ . (8.18)

Substituting (8.18) into (8.17) and rewriting it in a matrix form, we obtain

Q =
1
M

(g(x1), . . . ,g(xM)) (IM − 1M)

⎛
⎜⎝

gT (x1)
...

gT (xM)

⎞
⎟⎠ , (8.19)

216 8 Kernel-Based Methods

where IM is the M × M unit matrix and 1M is the M × M matrix with all
elements being 1/M .

Let λ and z be the eigenvalue and the associated eigenvector of Q:

Q z = λ z. (8.20)

Substituting (8.19) into (8.20),

1
M

(g(x1), . . . ,g(xM)) (IM − 1M)

⎛
⎜⎝

gT (x1) z
...

gT (xM) z

⎞
⎟⎠ = λ z. (8.21)

Thus z is expressed by a linear sum of {g(x1), . . . ,g(xM)}.
According to the formulation of [216], all the training data are used to

represent z. But by this method we need to retain all the training data after
training. To overcome this problem, in [215, 230], sparsity is introduced into
KPCA by imposing some restriction to the parameter range. Here, instead of
restricting the parameter range, we select a set of linearly independent data
from the training data as discussed in Section 8.1. By this method, we can
retain only the selected data after training.

Without loss of generality, we can assume that a set of vectors, {g(x1), . . . ,
g(xM ′)} (M ′ ≤ M), spans the space generated by {g(x1), . . . ,g(xM)}. Then
z is expressed by

z = (g(x1), . . . ,g(xM ′))

⎛
⎜⎝

ρ1
...

ρM ′

⎞
⎟⎠ , (8.22)

where ρ1, . . . , ρM ′ are scalars.
In (8.21) we are only interested in the components for g(xi) (i = 1, . . . , M ′).

Multiplying both terms of (8.21) by gT (xi) from the left and substituting
(8.22) into (8.21), we obtain

1
M

(Hi1, . . . , HiM) (IM − 1M) H ρ′ = λ (Hi1, . . . , HiM ′) ρ′, (8.23)

where Hij = H(xi,xj) = gT (xi)g(xj), ρ′ = (ρ1, . . . , ρM ′)T , H = {Hij}
(i = 1, . . . , M, j = 1, . . . , M ′). Thus, combining (8.23) for i = 1, . . . , M ′,

1
M

HT (IM − 1M) Hρ′ = λHsρ′, (8.24)

where Hs = {Hij} (i = 1, . . . , M ′, j = 1, . . . , M ′).1

Equation (8.24) has the form Ax = λB x, where A and B are n × n
matrices. Solving the equation for λ and x is called the generalized eigenvalue

1If M ′ = M , (8.24) is the same as equation (20.13) in [216].

8.2 Kernel Principal Component Analysis 217

problem [96, pp. 375–6]. And if B is nonsingular, there are n eigenvalues.
Because {g(x1), . . . ,g(xM ′)} are linearly independent, Hs is positive definite.
Thus by the Cholesky factorization, Hs = L LT , where L is a lower triangular
matrix. Multiplying both terms of (8.24) by L−1 from the left [195, pp. 462–3],
we obtain

1
M

L−1HT (IM − 1M) H(L−1)T (LT ρ′) = λ (LT ρ′). (8.25)

Here, λ is the eigenvalue and the LT ρ′ is the eigenvector. Because the co-
efficient matrix is a symmetric, positive semidefinite matrix, the eigenvalues
are nonnegative. Thus solving the eigenvalue λ and the eigenvector LT ρ′ of
(8.25), we obtain the generalized eigenvalue λ and the eigenvector ρ′ of (8.24).

Let λ1 ≥ λ2 ≥ · · · ≥ λM ′ be the eigenvalues and z1, . . . , zM ′ be the
associated eigenvectors for (8.20) and

zi = (g(x1), . . . ,g(xM ′))

⎛
⎜⎝

ρi1
...

ρiM ′

⎞
⎟⎠ for i = 1, . . . , M ′, (8.26)

where ρi1, . . . , ρiM ′ are scalars. We normalize zi for i = 1, . . . , M ′. Namely,

zT
i zi = 1. (8.27)

Let the adjusted ρij be ρ′
ij .

For x we call

zT
i (g(x) − c) =

M ′∑
j=1

ρ′
ij H(xj ,x) − zT

i c (8.28)

the ith kernel principal component of x. Here, zT
i c is calculated by (8.18),

(8.26), and (8.24). Thus, after training we can discard (xM ′+1, . . . ,xM).
The eigenvalue λi is the variance in the zi direction. The trace of Q is

defined as the sum of the diagonal elements of Q:

tr(Q) =
M ′∑
i = 1

Qii. (8.29)

Then tr(Q) = λ1 + · · · + λM ′ [96, p. 310]. Thus the sum of the variances of
x is the same as the sum of the variances of z. Suppose we select the first d
principal components. We define the accumulation of d eigenvalues as follows:

Ac(d) =

d∑
i = 1

λi

M ′∑
i = 1

λi

× 100 (%). (8.30)

218 8 Kernel-Based Methods

The accumulation of eigenvalues shows how well the reduced feature vector
reflects the characteristics of the original feature vector in the feature space.

Kernel PCA can be used for feature extraction for pattern classification
and noise filtering of image data called denoising. In denoising by kernel PCA
we choose the principal components and discard the remaining components.
Then we restore the image called the preimage. Because usually, inverse map-
ping does not exist, this is done by minimizing

‖Φ − g(x)‖, (8.31)

where Φ is the reduced image in the feature space and x is the preimage in the
input space. Mika et al. [167] proposed an iterative method for RBF kernels.
To suppress the effect of outliers, Takahashi and Kurita [243] proposed mod-
ifying the principal components during iterations applying robust statistical
techniques.

8.3 Kernel Mahalanobis Distance

The Mahalanobis distance for a class is a distance, from the center of the
class, normalized by the inverse of the covariance matrix for that class. The
Mahalanobis distance is linear transformation invariant and is widely used
for pattern classification. In this section, we discuss two methods to calculate
the kernel version of the Mahalanobis distance: (1) the kernel Mahalanobis
distance calculated by singular value decomposition (SVD) [206] and (2) the
kernel Mahalanobis distance calculated by KPCA. In the former method, all
the training data are used for calculating the pseudo-inverse. But in the latter
method, independent vectors in the feature space are selected by Cholesky
factorization. Thus, usually, the latter method takes less time in calculation.

8.3.1 SVD-Based Kernel Mahalanobis Distance

The kernel Mahalanobis distance dgi
(x) for class i is given by

d2
gi

(x) = (g(x) − ci)T Q−1
gi

(g(x) − ci), (8.32)

where g(x) is the mapping function from the input space to the l-dimensional
feature space and ci is the center of class i in the feature space:

ci =
1

Mi

Mi∑
j=1

g(xij). (8.33)

Here xij = (xij1 · · ·xijm)T is the jth training datum for class i and Mi is the
number of training data for class i.

The covariance matrix for class i in the feature space, Qgi , is expressed in
a matrix form as follows:

8.3 Kernel Mahalanobis Distance 219

Qgi =
1

Mi

Mi∑
j=1

(g(xij) − ci) (g(xij) − ci)T

= gT (Xi)
(

1
Mi

(IMi
− 1Mi

)
)
g(Xi), (8.34)

where the second equation is derived by substituting (8.33) into the right-hand
side of the first equation, IMi

is the Mi ×Mi unit matrix, 1Mi
is the Mi ×Mi

matrix with all the components equal to 1/Mi, and g(Xi) is an Mi × l matrix:

g(Xi) =

⎛
⎜⎝

gT (xi1)
...

gT (xiMi
)

⎞
⎟⎠ . (8.35)

To calculate the kernel Mahalanobis distance given by (8.32) without ex-
plicitly treating the variables in the feature space, we need to use the kernel
trick. Namely, we transform (8.32) so that only the dot-products gT (x)g(x)
appear in (8.32) [206].

Because IMi
− 1Mi

is a symmetric, positive semidefinite matrix, we can
define the square root of the matrix, Zi by

Zi =
(

1
Mi

(IMi
− 1Mi)

) 1
2

. (8.36)

Substituting (8.36) into (8.34), we obtain

Qgi = gT (Xi) Z2
i g(Xi). (8.37)

Substituting (8.37) into (8.32) gives

d2
gi

(x) = (g(x) − ci)
T (gT (Xi) Z2

i g(Xi)
)−1

(g(x) − ci) . (8.38)

Now the following equation is valid for any integer n, symmetric, positive
semidefinite matrix A, and any vectors t and u [206]:

tT (XT A X)n u = tT XT (A
1
2 (A

1
2 HA

1
2)n−1A

1
2) X u, (8.39)

where H = XXT . If n is negative, it means pseudo-inverse. We calculate the
pseudo-inverse using the singular value decomposition.

Here because Z2
i in (8.38) is a symmetric, positive semidefinite matrix, we

can apply (8.39) to (8.38):

d2
gi

(x) = (g(Xi)g(x) − g(Xi) ci)
T (

Zi (Zi g(Xi)gT (Xi) Zi)−2Zi

)
× (g(Xi)g(x) − g(Xi) ci) . (8.40)

Because (8.40) consists of only dot-products in the feature space, we can
replace them with kernels:

220 8 Kernel-Based Methods

H(x,y) = gT (x)g(y). (8.41)

Using (8.41), we can rewrite the dot-products in (8.40) as follows:

g(Xi)g(x) =

⎛
⎜⎝

gT (xi1)g(x)
...

gT (xiMi
)g(x)

⎞
⎟⎠

=

⎛
⎜⎝

H(xi1,x)
...

H(xiMi ,x)

⎞
⎟⎠ = H(Xi,x), (8.42)

g(Xi) ci =
1

Mi
g(Xi)

Mi∑
j=1

g(xij)

=
1

Mi

Mi∑
j=1

H(Xi,xij), (8.43)

g(Xi)gT (Xi) =

⎛
⎜⎝

gT (xi1)
...

gT (xiMi)

⎞
⎟⎠(g(xi1) · · · g(xiMi

)
)

=

⎛
⎜⎝

H(xi1,xi1) · · · H(xi1,xiMi
)

...
. . .

...
H(xiMi ,xi1) · · · H(xiMi ,xiMi)

⎞
⎟⎠

= H(Xi, X
T
i). (8.44)

Substituting (8.42), (8.43), and (8.44) into (8.40), we obtain

d2
gi

(x) =

⎛
⎝H(Xi,x) − 1

Mi

Mi∑
j=1

H(Xi,xij)

⎞
⎠

T (
Zi (Zi H(Xi, X

T
i) Zi)−2 Zi

)

×
⎛
⎝H(Xi,x) − 1

Mi

Mi∑
j=1

H(Xi,xij)

⎞
⎠ . (8.45)

Using (8.45) we can calculate the kernel Mahalanobis distance without treat-
ing variables in the feature space. But (Zi H(Xi, X

T
i) Zi)−2 needs to be calcu-

lated by singular value decomposition. In the following, we discuss the singular
value decomposition and its variant to improve generalization ability when the
number of data is small.

Any matrix A is decomposed into A = S ΛUT by singular value decom-
position, where S and U are orthogonal matrices (S ST = I, U UT = I, where
I is a unit matrix) and Λ is a diagonal matrix. If A is an m × m positive
semidefinite matrix, the singular value decomposition is equivalent to the di-
agonalization of the matrix. Namely, S, Λ, U are m × m square matrices and

8.3 Kernel Mahalanobis Distance 221

S = U . Because Zi H(Xi, X
T
i) Zi is a symmetric, positive semidefinite ma-

trix, in the following discussion we assume that A is symmetric and positive
semidefinite.

If A is positive definite, the inverse of A is expressed as follows:

A−1 = (U ΛUT)−1 = (UT)−1Λ−1 U−1

= UΛ−1UT . (8.46)

Assume that A is positive semidefinite with rank r (m > r). In this case
the pseudo-inverse of A, A+, is used. In the following we discuss two methods
to calculate the pseudo-inverse: the conventional and improved methods.

Conventional Method

Because m > r holds, the (r + 1)st to mth diagonal elements of Λ are zero.
In the conventional pseudo-inverse, if a diagonal element λi is larger than or
equal to σ, where σ is a predefined threshold, we set 1/λi to the ith element
of Λ+. But if it is smaller, we set 0.

Improved Method

In the conventional method, if a diagonal element is smaller than σ, the associ-
ated diagonal element of the pseudo-inverse is set to 0. This means that all the
components with small singular values are neglected. Namely, the subspace
corresponding to zero diagonal elements is neglected. This leads to decreasing
the approximation ability of the subspace. To avoid this we set 1/σ instead
of 0. Namely, we calculate the pseudo-inverse as follows:

A+ = U Λ+ UT

= U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ−1
1

. . .
λ−1

r
1
σ

. . .
1
σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

UT . (8.47)

8.3.2 KPCA-Based Mahalanobis Distance

In this section we discuss a KPCA-based method to calculate a Mahalanobis
distance in the feature space. This method is equivalent to the kernel Maha-
lanobis distance discussed in Section 8.3.1. But in this method because we
can discard the redundant input vectors, calculation time can be shortened
compared with that of the conventional kernel Mahalanobis distance given by
(8.45).

222 8 Kernel-Based Methods

Let λj and zj be the jth eigenvalue and the associated eigenvector of the
covariance matrix Qgi

given by (8.34). Then

Qgizj = λj zj for j = 1, . . . , l, (8.48)

where l is the dimension of the feature space. Then for the pseudo-inverse of
Qgi

, Q+
gi

, the following equation holds:

Q+
gi

zj =
{

λ−1
j zj λj > 0,

0 λj = 0.
(8.49)

Then the jth kernel principal component of input x is defined by

yj =
{

zT
j (g(x) − ci) λj > 0,

0 λj = 0.
(8.50)

From (8.50), the Mahalanobis distance in that space can be calculated as
follows:

d2
gi

(x) =
y2
1

λ1
+ · · · +

y2
M

′
i

λM
′
i

, (8.51)

where M
′
i is the number of nonzero eigenvalues.

To calculate the component given by (8.50) efficiently, we use the KPCA
discussed in Section 8.2.

9

Maximum-Margin Multilayer Neural Networks

Three-layer (one-hidden-layer) neural networks are known to be universal ap-
proximators, in that they can approximate any continuous functions with
any accuracy. However, training a multilayer neural network by the back-
propagation algorithm is slow and the generalization ability depends on the
initial weights. As for improving the generalization ability, there are several
approaches. One way is to add a regularization term, e.g., the square sum
of the weights, in the objective function of back-propagation training. Or we
may train a support vector machine with sigmoid functions as kernels. But
because sigmoid functions satisfy Mercer’s condition only for specific param-
eter values, several approaches have been proposed to overcome this problem
(e.g., [239]).

Instead of using support vector machines, we may maximize margins. For
example, Jayadeva, Deb, and Chandra [120] formulated a decision tree by
linear programming and maximized margins by support vector machine–based
training. Based on the network synthesis theory [3, 279], Nishikawa and Abe
[178] trained a three-layer neural network layer by layer, maximizing margins.

In this chapter, based on [178], we discuss how to maximize margins of a
three-layer neural network classifier that is trained layer by layer and compare
the recognition performance with that of support vector machines.

9.1 Approach

The CARVE (Constructive Algorithm for Real-Valued Examples) algorithm
[3, 279] guarantees that any pattern classification problem can be synthesized
in three layers if we train the hidden layer in the following way. First, we
separate a part of the (or the whole) data belonging to a class from the
remaining data by a hyperplane. Then we remove the separated data from
the training data. We repeat this procedure until only the data belonging to
one class remain.

224 9 Maximum-Margin Multilayer Neural Networks

In the following, we discuss a method for training neural network classi-
fiers based on the CARVE algorithm. To improve generalization ability, we
maximize margins of hidden-layer hyperplanes and output-layer hyperplanes.
Because the training data on one side of the hidden-layer hyperplane need
to belong to one class, we cannot apply the quadratic optimization technique
used for training support vector machines. Therefore, we extend the heuristic
training method called direct SVMs [203], which sequentially searches support
vectors. For the output layer, because there is no such restriction, we use the
quadratic optimization technique.

9.2 Three-Layer Neural Networks

Figure 9.1 shows a three-layer neural network with one hidden layer. In the
figure, the input is fed from the left and each layer is called, from left to right,
input layer, hidden layer, and output layer. We may have more than one hidden
layer. The input layer consists of input neurons and a bias neuron whose input
is constant (usually 1). The hidden layer consists of hidden neurons and a bias
neuron, and the output layer consists of output neurons. The number of output
neurons is the number of classes for pattern classification and the number of
outputs to be synthesized for function approximation. The input neurons and
the hidden neurons, and the hidden neurons and the output neurons are fully
connected by weights. The input and output of the ith neuron of the kth layer
are denoted by xi(k) and zi(k), respectively, and the weight between the ith
neuron of the kth layer and the jth neuron of the (k + 1)st layer is denoted
by wji(k).

Inputs to the input layer are output by the input neuron without change,
and the output of the bias neuron is 1. Namely,

1
1

x1(1)

x2(1)

xn(1)(1)

z1(3)

z2(3)

zn(3)(3

w11(1) w11(2)

Fig. 9.1. Structure of a three-layer neural network

9.2 Three-Layer Neural Networks 225

zj(1) =

⎧⎨
⎩

xj(1) for j = 1, . . ., n(1),

1 for j = n(1) + 1,
(9.1)

where n(1) is the number of input neurons.
Outputs of the input (hidden) neurons and the bias neuron are multiplied

by the weights and their sums are input to the hidden (output) neurons as
follows:

xi(k + 1) = wT
i (k) z(k) for i = 1, . . ., n(k + 1), k = 1, 2, (9.2)

where n(k + 1) is the number of the (k + 1)st-layer neurons and

x(k) =
(
x1(k), . . . , xn(k)(k)

)T
,

z(k) =
(
z1(k), . . . , zn(k)(k), zn(k)+1(k)

)T
, (9.3)

wi(k) =
(
wi1(k), . . ., wi,n(k)(k), wi,n(k)+1(k)

)T
for i = 1, . . . , n(k + 1).

The output function of the hidden (output) neurons is given by the sigmoid
function shown in Fig. 9.2. Namely, their outputs are given by

zi(k + 1) =
1

1 + exp
(

−xi(k + 1)
T

) for i = 1, . . ., n(k + 1), (9.4)

where T is a positive parameter that controls the slope of the sigmoid function,
and usually T = 1.

Let for the training inputs x1, . . . ,xM , where M is the number of training
data, the desired outputs be s1, . . . , sM , respectively. Then the training of the

ε

−γ γ

1

0

f(x)

x

1 − ε

Fig. 9.2. Sigmoid function

226 9 Maximum-Margin Multilayer Neural Networks

network is to determine all the weights wi(k) so that for the training input xi,
the output becomes si. Thus we want to determine the weights wi(k) so that
the sum-of-squares error between the target values and the network outputs:

E =
1
2

M∑
l = 1

(zl(3) − sl)T (zl(3) − sl) (9.5)

is minimized, where zl(3) is the network output for xl.
Or for the input-output pairs (xl, sl), we determine the weights wi(k) so

that
|zlj(3) − slj | ≤ ε(3) for j = 1, . . . , n(3), l = 1, . . . , M (9.6)

are satisfied, where ε(3) (> 0) is the tolerance of convergence for the output
neuron outputs.

When the network is used for pattern classification, the ith output neuron
corresponds to class i, and for the training input xl belonging to class i, the
target values of the output neurons j (j = 1, . . . , n(3)) are assigned as follows:

slj =
{

1 for j = i,
0 for j �= i.

(9.7)

Because E given by (9.5) shows how well the neural network memorizes the
training data, too small a value of E, i.e., overfitting may result in worsening
the generalization ability of the neural network. To avoid this, the validation
data set is prepared as well as the training data set, and training is stopped
when the value of E for the validation data set starts to increase. Or, we may
add a regularization term such as

λ

2∑
k=1

n(k+1)∑
i=1

wT
i (k)wi(k) (9.8)

to (9.5) to prevent overfitting, where λ (> 0) is the regularization constant.
In the back-propagation algorithm, for each training datum, weights in

each layer are corrected by the steepest descent method so that the output
errors are reduced:

wnew
ij (k) = wold

ij (k) − αlr
∂El

∂wold
ij (k)

, (9.9)

where αlr (> 0) is the learning rate and El is the square error for the lth
training datum:

El =
1
2
(zl(3) − sl)T (zl(3) − sl). (9.10)

Because one datum is processed at a time, training by the back-propagation
algorithm is slow for a large problem.

In the following, we discuss training of three-layer networks layer by layer,
maximizing margins.

9.4 Determination of Hidden-Layer Hyperplanes 227

9.3 CARVE Algorithm

According to the CARVE algorithm [3, 279], any pattern classification prob-
lem can be synthesized in three layers. In the hidden layer, we determine
the hyperplane so that the data of a single class exist on one side of the hy-
perplane. Then the separated data are removed from the training data. The
hidden layer training is completed when only data of a single class remain.

We explain the procedure using the example shown in Fig. 9.3. The class
data shown in triangles include a datum, which is the farthest from the center
of the training data shown in the asterisk. Thus we separate the data of this
class from the remaining data.

: Center vector*

*

Fig. 9.3. Sample data. From [178, p. 323, c©IEEE 2002]

As shown in Fig. 9.4, a hyperplane is determined so that the data of this
class are on one side of the hyperplane. Then the separated data in gray are
removed from the training data. We call the data that are used for determining
hyperplane active data and the deleted data inactive data. For the reduced
training data, the class data shown in squares include a datum that is farthest
from the center.

Thus we determine a hyperplane so that only the data of this class is on
one side of the hyperplane, as shown in Fig. 9.5.

We repeat this procedure until the remaining training data belong to a
single class (see Fig. 9.6). We say that a hyperplane satisfies the CARVE
condition if on one side of the hyperplane data of only one class exist.

In the output layer, for class i we determine a hyperplane so that class i
data are separated from the remaining data. In this way we can construct a
three-layer neural network for an n-class problem.

9.4 Determination of Hidden-Layer Hyperplanes

According to the CARVE algorithm, on one side of the hyperplane, data of
different classes cannot coexist. We may realize this constraint, as discussed

228 9 Maximum-Margin Multilayer Neural Networks

*

Fig. 9.4. Create the first hyperplane. From [178, p. 323, c©IEEE 2002]

*

Fig. 9.5. Create the second hyperplane. From [178, p. 323, c©IEEE 2002]

Fig. 9.6. All active data belong to one class. From [178, p. 323, c©IEEE 2002]

9.4 Determination of Hidden-Layer Hyperplanes 229

in Section 2.6.8, by training a support vector machine with different margin
parameters. Because a hidden-layer hyperplane is determined in the input
space, linear kernels need to be used. Therefore, the problem may be insepa-
rable. However, if the problem is inseparable, there are cases where degenerate
solutions are obtained. Thus, we cannot use a support vector machine.

To overcome this problem, we extend the direct SVM [203], which deter-
mines the optimal hyperplane geometrically. Let the farthest datum from the
center of the training data belong to class i. Initially, we consider separating
class i data from the remaining data, and we set the target values of the class
i data to +1 and those of the remaining data to −1. We call the side of the
hyperplane where the data with the positive targets reside the positive side
of the hyperplane.

First, as initial support vectors we choose the data pair that has the min-
imum distance among the data pairs with opposite target values. The initial
hyperplane is determined so that it goes through the center of the data pair
and orthogonal to the line segment that connects the data pair. If there are
data with negative targets on the positive side of the hyperplane, these data
violate the CARVE condition. Thus, to satisfy the CARVE condition, we
rotate the hyperplane until no data violate the condition. The previously vi-
olating data are added to the support vectors. In the following, we describe
the procedure in more detail.

9.4.1 Rotation of Hyperplanes

Let the initial support vectors be x+
0 and x−

0 . Then, the weight vector of the
initial hyperplane is given by

w0 = x+
0 − x−

0 , (9.11)

and the hyperplane is written by

wT
0 x − wT

0 c0 = 0, (9.12)

where c0 is the center of the data pair {x+
0 ,x−

0 }. If there are no data that
violate the CARVE condition in the remaining data, we finish training. If
there are data of the negative target, we add the most-violating datum to
the support vectors. Let the obtained support vector be x−

1 and the center
of the data pair {x+

0 ,x−
1 } be c1. The hyperplane is updated so that it passes

through the two points c0 and c1. If there are still violating data, we repeat
updating.

First, we show the updating method in the two-dimensional space using
Fig. 9.7, which shows the initial hyperplane.

Because there are data that violate the CARVE condition, we rotate the
hyperplane as shown in Fig. 9.8.

Define r1 by r1 = c1 −c0, where r1 is a vector that the rotated hyperplane
includes (see Fig. 9.9). We calculate the weight vector w1 that is orthogonal
to r1:

230 9 Maximum-Margin Multilayer Neural Networks

Initial HP

Center vector

x-
0

x0
+

c0

Fig. 9.7. Initial hyperplane. From [178, p. 324, c©IEEE 2002]

1st updating

: Center vector

x-
0

x0
+

c0

x1
-

c1

Fig. 9.8. First updating of the hyperplane. From [178, p. 324, c©IEEE 2002]

x0
+

c0

c1

w0
r1

− w0
Tr1'

w1

Fig. 9.9. Detail of updating. From [178, p. 324, c©IEEE 2002]

w1 = w0 − wT
0 r′

1 r′
1, (9.13)

where r′
1 is the normalized vector of r1. The resulting hyperplane satisfies the

CARVE condition.
Now consider the mth updating in the n-dimensional space, which requires

the hyperplane to pass through the centers of support vector pairs, c0, . . . , cm.
Thus the maximum number of updatings is (n − 1). This is because, if we

9.4 Determination of Hidden-Layer Hyperplanes 231

update the hyperplane (n − 1) times, the hyperplane must go through n cen-
ters, and no further rotation is possible. For the mth updating, we find the
most-violating datum with the negative target. Let the datum be x−

m. Then,
because cm is the center of {x+

0 ,x−
m}, rm, which is included in the rotated

hyperplane, is given by rm = cm − c0.
The hyperplane with the coefficient vector wm−1 includes the vectors

{r1, . . . , rm−1}. Let the vectors {p1, . . . ,pm−1} be the orthogonal system
of {r1, . . . , rm−1}. Obviously, the hyperplane with the weight vector wm−1
includes {p1, . . . ,pm−1}.

We use the Gram-Schmidt orthogonalization to calculate pm:

pm = rm −
m−1∑
k=1

rT
m p′

k p′
k, (9.14)

where p′
k is the normalized vector of pk. The weight vector wm−1 of the

hyperplane is determined so that it is orthogonal to the orthogonal system
{p1, . . . ,pm−1}. For the mth updating, it is updated to be orthogonal to pm.
Namely, wm is obtained by rotating the hyperplane in the direction of pm

with c0 as the center:

wm = wm−1 − wT
m−1 p′

m p′
m. (9.15)

Then the updated hyperplane includes the vectors {r1, . . . , rm}.

9.4.2 Training Algorithm

A procedure for determining hidden-layer hyperplanes is as follows:

1. Calculate the center of the active data, where initially all the training
data are active.

2. Find the datum that is the farthest from the center. Set the targets of the
data that belong to the same class with the farthest datum to 1 and those
of the remaining data to −1.

3. Find the nearest data pair of opposite targets among all active data pairs.
Let them be (x+

0 ,x−
0). The center c0 and the weight w0 are given by

c0 =
1
2
(x+

0 + x−
0), (9.16)

w0 = x+
0 − x−

0 . (9.17)

4. Calculate the values of the decision function:

D(xi) = wT
m xi − wT

m c0 for i = 1, . . . , M. (9.18)

5. If all the data with negative targets satisfy

−D(x−
i) ≥ C(2) D(x+

0) for i ∈ B, (9.19)

232 9 Maximum-Margin Multilayer Neural Networks

the hyperplane that satisfies the CARVE condition is found; go to Step 8,
where B is the indices of data with negative targets and C(2) plays the
role of the soft margin. Otherwise, go to Step 5. Usually, C(2) is set to
C(2) < 1. If C(2) is negative, the data with a negative target may exist on
the positive side of the hyperplane. Thus for negative C(2), the CARVE
condition is violated.

6. In the mth updating, we include the most-violating datum x−
m in the

support vectors. Then we calculate cm = (x+
0 +x−

m)/2 and rm = cm −c0.
From {r1, . . . , rm}, the mth component of the orthogonal system, pm, is

pm = rm −
m−1∑
k=1

rT
m p′

k p′
k. (9.20)

The weight vector wm is written as follows:

wm = wm−1 − wT
m−1 p′

m p′
m. (9.21)

We can obtain the orthogonal vector wm for the hyperplane that passes
through c0, c1, . . . , cm by updating in this way.

7. If updating was repeated n or M times, it is failed for the current data
pair. Return to Step 4, setting the next nearest data pair as (x+

0 ,x−
0) and

recalculating the associated weight vector. Otherwise, return to Step 4
and repeat training.

8. If the active data belong to one class, terminate the algorithm. Otherwise,
make the data on the positive side of the hyperplane inactive and return
to Step 2.

9.5 Determination of Output-Layer Hyperplanes

We determine the output-layer hyperplanes using the same technique that
trains support vector machines. The hyperplane is obtained by solving the
following dual problem. Maximize

Q(ρ) =
M∑
i=1

ρi − 1
2

M∑
i,j=1

ρi ρj yi yj zT
i zj (9.22)

subject to

M∑
i=1

yi ρi = 0, 0 ≤ ρi ≤ C(3) for i = 1, . . . , M, (9.23)

where ρ = (ρ1, . . . , ρM)T and ρi are the Lagrange multipliers, C(3) is the
margin parameter for the output layer, zi are the output vectors of the hidden
neurons, and yi are the associated labels. For training the output layer for
class i, we set yi = 1 for the class i data and −1 for the data belonging to the
remaining classes.

9.7 Performance Evaluation 233

9.6 Determination of Parameter Values

Usually, the value of T in the sigmoid function is set to 1. Here, we determine
the value of T so that the outputs of the unbounded support vectors are the
same for hidden and output layers.

From (9.4), the jth output of the ith layer for the unbounded support
vector is given by

z∗
j (i + 1) =

1
1 + exp(−(wT

j (i)x∗
j (i) + bj(i))/Tj(i))

, (9.24)

where x∗
j (i) and Tj(i) are the support vector and the slope parameter of the

jth hyperplane of the ith layer, respectively. We set the value of ε(i + 1) so
that 0 < ε(i + 1) < 0.5. Then, setting z∗

j (i + 1) = 1 − ε(i + 1), we get

Tj(i) =
−x∗T

j (i)wj(i) − bj(i)

log
(

ε(i+1)
1−ε(i+1)

) . (9.25)

9.7 Performance Evaluation

We compared the performance of maximum-margin neural networks (MM
NNs) against one-against-all fuzzy support vector machines (FSVMs) and
multilayer neural networks trained by the back-propagation algorithm (BP)
using the data sets listed in Table 1.1. We used a Pentium III 1GHz personal
computer.

In training FSVM and the output layer of MM NN, we used the primal-
dual interior-point method combined with variable chunking (50 data were
added). For FSVM we used polynomial kernels.

In training neural networks by the back-propagation algorithm, we set
T (2) = T (3) = 1, the learning rate to be 1, and the maximum number of
epochs to be 15, 000. The number of hidden units was set to be equal to
or smaller than the number generated by MM NN. The neural network was
trained 10 times (3 times for hiragana data) changing the initial weights.

For MM NN, we set C(3) = 500, ε(2) = 0.4, ε(3) = 0.2, and we evaluated
the performance changing the value of C(2).

Table 9.1 lists the best performance obtained by FSVM, the neural net-
work trained by the back-propagation algorithm (BP), and MM NN and the
training time. The highest recognition rate of the test data is shown in bold-
face. The column “Parm” for BP shows the number of hidden neurons.

From the table, recognition performance of MM NN and FSVM is compa-
rable, but for the thyroid data, the recognition rate of the test data for MM
NN is higher than for FSVM by about 1 percent, although the recognition
rates of the training data are almost the same. Except for the numeral data,
BP showed inferior recognition performance than MM NN. Especially for the

234 9 Maximum-Margin Multilayer Neural Networks

Table 9.1. Performance comparison of maximum-margin neural networks

Data Classifier Parm Rate Time

(%) (s)

FSVM d3 99.51 (100) 1

Numeral BP 18 99.76 (100) 3

MM NN C(2) = 0.2 99.63 (100) 1

FSVM d3 97.55 (99.26) 64

Thyroid BP 5 98.37 (99.58) 280

MM NN C(2) = −0.2 98.51 (99.20) 29

FSVM d3 93.26 (98.22) 30

Blood cell BP 85 91.61 (98.29) 3091

MM NN C(2) = −0.5 93.00(98.84) 244

FSVM d5 99.46 (100) 122

Hiragana-50 BP 100 97.25 (98.91) 11262

MM NN C(2) = 0.6 99.02 (100) 919

FSVM d2 100 (100) 564

Hiragana-105 BP 100 99.84 (99.99) 28801

MM NN C(2) = −0.3 100 (100) 2711

FSVM d2 99.51(99.92) 292

Hiragana-13 BP 100 99.17 (99.51) 13983

MM NN C(2) = −0.1 99.58 (100) 2283

hirgana-50 data, the recognition rate of the test data was lower. This is be-
cause the number of the hiragana-50 training data per class is small and there
is no overlap between classes. Thus, without the mechanism of maximizing
margins, the high recognition rate was not obtained.

Training of MM NN was faster than that of BP, but except for the thyroid
data, slower than that of FSVM. The reason for slow training compared to that
of FSVM is that by MM NN a large number of hidden neurons were generated.
For example, for hiragana-13 data, 261 hidden neurons were generated.

9.8 Summary

In this chapter, we discussed training multilayer neural networks layer by
layer, maximizing the margins of separating hyperplanes. In training the

9.8 Summary 235

input-to-hidden-layer weights, we discussed the geometrical training method,
and in training the hidden-to-output-layer weights, we used the conventional
quadratic training method. According to the computer experiments, classifi-
cation performance of the proposed method was comparable to that of the
support vector machine and better than that of the multilayer neural network
trained by the back-propagation algorithm.

10

Maximum-Margin Fuzzy Classifiers

In conventional fuzzy classifiers, fuzzy rules are defined by experts. First, we
divide the ranges of input variables into several nonoverlapping intervals. And
for each interval, we define a membership function, which defines the degree to
which the input value belongs to the interval. Now the input space is covered
with nonoverlapping hyperrectangles. We define, for each hyperrectangle, a
fuzzy rule. Suppose we have two variables, and each range is divided into
three: small, medium, and large. An example of a fuzzy rule is as follows:

If x1 is small and x2 is large, then x belongs to Class 2.

One of the advantages of fuzzy classifiers over multilayer neural networks
or support vector machines is that we can easily understand how they work.
But because the fuzzy rules need to be defined by experts, development of
classifiers is difficult.

To overcome this problem, many fuzzy classifiers that can be trained us-
ing numerical data have been developed [3]. Trainable fuzzy classifiers are
classified, from the shape of the approximated class regions, into

1. fuzzy classifiers with hyperbox regions [3, 11, 226],
2. fuzzy classifiers with polyhedral regions [3, 224, 245, 253], and
3. fuzzy classifiers with ellipsoidal regions [2, 3, 13].

For these fuzzy classifiers, fuzzy rules are defined either by preclustering
or postclustering the training data. In preclustering, the training data for
each class are divided into clusters in advance, and using the training data in
the cluster a fuzzy rule is defined. Then we tune slopes and/or locations of
the membership functions so that the recognition rate of the training data is
maximized allowing the previously correctly classified data to be misclassified.
In postclustering, one fuzzy rule is defined using the training data included in
each class and the membership functions are tuned. Then if the recognition
rate of the training data is not sufficient, we define the fuzzy rule for the
misclassified training data.

238 10 Maximum-Margin Fuzzy Classifiers

These fuzzy classifiers are trained so that the recognition rate of the train-
ing data is maximized. Thus, if the recognition rate reaches 100 percent, the
training is terminated and no further tuning for the class boundaries is done.
Therefore, the generalization ability of the conventional fuzzy classifiers de-
grades especially when the number of training data is small or the number of
the input variables is large.

In this chapter we first discuss an architecture of a kernel version of a fuzzy
classifier with ellipsoidal regions and improvement of generalization ability by
transductive training, in which unlabeled data are used [126, 127], and by
maximizing margins [12]. Then we discuss the architecture of a fuzzy classifier
with polyhedral regions and an efficient rule-generation method [245].

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions

In this section, we first summarize the architecture of a fuzzy classifier with
ellipsoidal regions and then discuss its kernel version [126] and improvement
of generalization ability by transductive training [127].

10.1.1 Conventional Fuzzy Classifiers with Ellipsoidal Regions

We summarize the conventional fuzzy classifier with ellipsoidal regions, which
is generated in the input space [3, 12, 13]. Here we consider classification of
the m-dimensional input vector x into one of n classes. We can define more
than one fuzzy rule for each class, but to make discussions simple, we assume
that we define one fuzzy rule for each class:

Ri: if x is ci thenx belongs to class i , (10.1)

where ci is the center vector of class i:

ci =
1

Mi

Mi∑
j=1

xij . (10.2)

Here, Mi is the number of training data for class i and xij is the jth training
datum for class i.

We define a membership function mi(x) (i = 1, . . . , n) for input x by

mi(x) = exp(−h2
i (x)), (10.3)

h2
i (x) =

d2
i (x)
αi

=
1
αi

(x − ci)T Q−1
i (x − ci), (10.4)

where di(x) is the Mahalanobis distance between x and ci; hi(x) is the tuned
distance; αi is the tuning parameter for class i; and Qi is the covariance matrix
for class i in the input space.

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 239

The covariance matrix for class i in the input space is given by

Qi =
1

Mi

Mi∑
j=1

(xij − ci)(xij − ci)T . (10.5)

We calculate the membership function of input x for each class. If the
degree of membership for class j is maximum, the input is classified into class
j. When αi in (10.4) is equal to 1, this is equivalent to finding the minimum
Mahalanobis distance. Function (10.3) makes the output range of (10.3) lie in
[0,1], and if mj(x) is equal to 1, the input x corresponds to the center of class
j, cj . We tune the membership function using αi in (10.4).

When Qi is positive definite, the Mahalanobis distance given by (10.4) can
be calculated using the symmetric Cholesky factorization [96]. Thus Qi can
be decomposed into

Qi = Li LT
i , (10.6)

where Li is the real valued regular lower triangular matrix.
But when Q is positive semidefinite, the value in the square root of diagonal

element of Li is nonpositive. To avoid this, during the Cholesky factorization,
if the value in the square root is smaller than ζ, where ζ is a predefined
threshold, the element is replaced by

√
ζ [3, 12]. This means that when the

covariance matrix is positive semidefinite, the principal components in the
subspace that the training data do not span, are taken into consideration to
calculate the Mahalanobis distance. Thus by this method, the generalization
ability does not decrease even when the training data are degenerate, namely,
the training data do not span the input space.

10.1.2 Extension to a Feature Space

In a kernel fuzzy classifier with ellipsoidal regions [126], the input space is
mapped into the feature space by a nonlinear mapping function. Because we
map the input space into the feature space, we assume that each class consists
of one cluster and we define a fuzzy rule for each class.

We define the following fuzzy rule for class i:

Ri : if g(x) is ci then x belongs to class i, (10.7)

where g(x) is a mapping function that maps the input space into the l-di-
mensional feature space, ci is the center of class i in the feature space and is
calculated by the training data included in class i:

ci =
1

|Xi|
∑

x ∈Xi

g(x), (10.8)

where Xi is the set of training data included in class i, and |Xi| is the number
of data included in Xi.

240 10 Maximum-Margin Fuzzy Classifiers

For center ci, we define the membership function mgi
(x) that defines the

degree to which x belongs to ci:

mgi(x) = exp(−h2
gi

(x)), (10.9)

h2
gi

(x) =
d2
gi

(x)
αi

, (10.10)

d2
gi

(x) = (g(x) − ci)T Q+
gi

(g(x) − ci), (10.11)

where hgi(x) is a tuning distance, dgi(x) is a kernel Mahalanobis distance
between g(x) and ci, αi is a tuning parameter for class i, Qgi

is the l ×
l covariance matrix for class i. And Q+

gi
denotes the pseudo-inverse of the

covariance matrix Qgi . Here we calculate the covariance matrix Qgi
using the

data belonging to class i as follows:

Qgi
=

1
|Xi|

∑
x∈Xi

(g(x) − ci)(g(x) − ci)T . (10.12)

In calculating the kernel Mahalanobis distance, we use either of the meth-
ods discussed in Section 8.3.

For an input vector x we calculate the degrees of membership for all the
classes. If mgk

(x) is the maximum, we classify the input vector into class k.

10.1.3 Transductive Training

Concept

We discussed the SVD-based Mahalanobis distance in Section 8.3.1 and the
KPCA-based Mahalanobis distance in Section 8.3.2. But with those methods,
when the training data are degenerate, i.e., the space spanned by the mapped
training data is a proper subspace in the feature space, the generalization
ability of the fuzzy classifier is decreased [126]. It is because the principal
components are zero in the subspace complementary to that spanned by the
mapped training data.

We now explain why using the example shown in Fig. 10.1. In the figure,
training data for class j are in the two-dimensional space, but those of class
i are in one dimension.

Assume that we have a datum x belonging to class j. This datum is in
the subspace spanned by the mapped training data belonging to class j, but
not in the subspace spanned by class i. Then the kernel Mahalanobis distance
between x and cj is correctly calculated by

d2
gj

(g(x)) =
y2

j1

λj1
+

y2
j2

λj2
. (10.13)

But for class i, because the second eigenvalue is zero due to the degeneracy
of the training data, d2

gj
(x) is erroneously given by

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 241

cj

c i

yj2

yj1

yi1

Zj1

Zi1

Training datum for class j

Training datum for class i

Datum that belongs to class j

Z j2

Class j

Class i

Fig. 10.1. The training data of class i are degenerate. Because the second eigenvalue
of class i is zero, the kernel Mahalanobis distance for class i, dgi(x), cannot be
calculated correctly. Reprinted from [127, p. 201] with permission from Elsevier

d2
gj

(x) =
y2

i1

λi1
. (10.14)

Because the kernel Mahalanobis distance for class i does not change even
if x moves in the direction orthogonal to the eigenvector zi1, classification by
the Mahalanobis distance becomes erroneous.

Similar to (8.47), we can overcome this problem, adding the vector that
is orthogonal to the existing eigenvectors for the covariance matrix with a
small positive eigenvalue. The next problem is how to select the appropriate
vectors for addition. If the linear kernel is used and the training data are
degenerate, i.e., the training data do not span the input space, we can add
the basis vectors in the input space that are in the complementary subspace
of the training data. But if the nonlinear kernel is used, the mapped training
data may not span the feature space even though the training data are not
degenerate.

To solve this problem, we use transductive training of the classifier. In
training, we add the basis vectors of the input space as the unlabeled training
data, and if the mappings of these data are in the complementary subspace
associated with the covariance matrix, we generate associated eigenvectors
with small positive eigenvalues. Namely, first we map the basis vectors into
the feature space, and then we perform the Cholesky factorization to judge
whether each mapped basis vector is included in the subspace associated with
the covariance matrix. If it is not included in the subspace, we calculate the
vector that is orthogonal to the subspace and modify the covariance matrix.

By this method, however, the complementary subspace may remain. Thus,
in classification, whenever an unknown datum is given, we judge whether the
mapped datum is included in the subspace associated with the covariance ma-

242 10 Maximum-Margin Fuzzy Classifiers

trix by the Cholesky factorization. If it is not included, we calculate the vector
orthogonal to the previously selected vectors by the Gram-Schmidt orthogo-
nalization and modify the covariance matrix. We can speed up factorization,
storing the previously factorized matrices and factorizing the row and column
associated with only the unknown datum.

Transductive Training Using Basis Vectors

In this section, we discuss how to improve approximation of the feature
space using the basis vectors {e1, . . . , em} in the input space in addition to
the vector of the mapped training data g(Xi). Because the class labels of
{e1, . . . , em} are not known, these data should not affect the principal com-
ponents associated with g(Xi). Therefore, first we calculate the eigenvalues
{λ1, . . . , λM ′

i
} and eigenvectors {z1, . . . , zM ′

i
} of Qg

i
and add eigenvectors

with small positive eigenvalues that are orthogonal to {z1, . . . , zM ′
i
} using

some of the {g(e1), . . . ,g(em)}.
Now we will explain the procedure in more detail. In a similar way as

discussed in Section 8.1, we can select independent vectors by the Cholesky
factorization of the kernel matrix for {x1, . . . ,xMi} and {e1, . . . , em}:

H(X ′
i, X

′T
i) = g(X ′

i)g
T (X ′

i), (10.15)

where
g(X ′

i) =
(
g(x1) · · · g(xMi) g(e1) · · · g(em)

)T
. (10.16)

Placing {g(e1), . . . ,g(em)} after g(xMi), we can select independent vectors
from {e1, . . . , em} that are not included in the subspace spanned by g(Xi).
Assume that m′ basis vectors, g(er) (r = 1, . . . , m′) are selected as the inde-
pendent vectors in addition to M ′

i independent training vectors. From the M ′
i

independent training data, the orthogonal system {z1, . . . , zM ′
i
} is calculated

by the method discussed in Section 8.3.2.
Next, using g(er) we generate the (M ′

i + 1)st extra eigenvector zM ′
i+1 by

the Gram-Schmidt orthogonalization:

zM ′
i+1 =

pr

‖pr‖ , (10.17)

where ‖pr‖ is the norm of pr:

pr = g(er) −
M ′

i∑
i=1

(gT (er) zi) zi

= g(er) −
M ′

i∑
i=1

ωi zi. (10.18)

Here, ωi = gT (er) zi.

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 243

By substituting (8.26) into (10.18), zM ′
i+1 is expressed by the linear sum

of {g(x1), . . . ,g(xM ′
i
),g(er)}:

zM ′
i+1 =

(
g(x1), . . . ,g(xM ′

i
),g(er)

)
⎛
⎜⎜⎜⎝

ρM ′
i+1,1
...

ρM ′
i+1,M ′

i
1

‖pr‖

⎞
⎟⎟⎟⎠ , (10.19)

where

ρM ′
i+1,j = − 1

‖pr‖
M ′

i∑
i=1

ωi ρij for j = 1, . . . , M ′
i . (10.20)

Using (10.19), we can calculate the (M ′
i + 1)st principal component as

follows:

yM ′
i+1 = zT

M ′
i+1(g(x) − ci)

=
M ′

i∑
i=1

ρM ′
i+1,i H(x,xi) +

1
‖pr‖H(er,x) − zT

M ′
i+1 ci. (10.21)

We iterate this procedure until the rest of the principal components yi (i =
M ′

i + 1, . . . , M ′
i + m′) are calculated.

We add these new principal components to the right-hand side of (8.51),
and finally the Mahalanobis distance becomes:

δ2
i (g(x)) =

y2
1

λ1
+ · · · +

y2
M ′

i

λM ′
i

+
y2

M ′
i+1

ε
+ · · · +

y2
M ′

i+m′

ε
, (10.22)

where for the added eigenvectors the associated eigenvalues are assumed to
be small and we set a small value to ε. We call (10.22) the KPCA-based
Mahalanobis distance with Gram-Schmidt orthogonalization.

Transductive Training Using Unknown Data

In the previous section, we discussed approximation of a subspace using the
mapped basis vectors g(e1), . . . ,g(em). With this method, the input space is
spanned if linear kernels are used, but for nonlinear kernels the whole feature
space cannot be covered. Thus approximation with the basis vectors may not
be enough to prevent generalization ability from decreasing.

To overcome this problem, we need to make unknown data lie in the sub-
space spanned by the eigenvectors associated with the covariance matrix. To
do so, when an unknown datum t is given, we judge whether this datum is
included in the space spanned by g(X ′

i). If the datum is not in the space,
we generate the extra eigenvector in a similar way as discussed previously.
Namely, for the kernel matrix

244 10 Maximum-Margin Fuzzy Classifiers

H(X ′′
i , X ′′T

i) = g(X ′′
i)gT (X ′′

i), (10.23)

where
g(X ′′

i) = (g(X ′
i), g(t))T

, (10.24)

we perform the Cholesky factorization. But because the factorization of H(X ′
i,

X ′T
i) can be done off-line, we only have to calculate the (Mi + m + 1)st row

and column of H(X ′′
i , X ′′T

i) (see (8.11) and (8.12)). If the value in the square
root in (8.12) is larger than η (> 0) (see (8.13)), the unknown datum t is
not included in the space spanned by g(X ′

i). Thus we generate the extra
eigenvector to span the subspace.

This method is not time-consuming because we do not need to calculate
the whole elements. When we are not given enough training data, this online
approximation may be effective.

10.1.4 Maximizing Margins

Concept

In the fuzzy classifier with ellipsoidal regions, if there are overlaps between
classes, the overlaps are resolved by tuning the membership functions, i.e.,
by tuning αi one at a time. When αi is increased, the slope of mgi(x) is
decreased and the degree of membership is increased. Then misclassified data
may be correctly classified and correctly classified data may be misclassified.
Based on this, we calculate the net increase of the correctly classified data.
Likewise, by increasing the slope, we calculate the net increase of the correctly
classified data. Then allowing new misclassification, we tune the slope so that
the recognition rate is maximized. In this way we tune fuzzy rules successively
until the recognition rate of the training data is not improved [3, pp. 121–9].

But if there is no overlap, the membership functions are not tuned. When
the number of training data is small, usually the overlaps are scarce. Thus,
the generalization ability is degraded. To tune membership functions even
when the overlaps are scarce, we use the idea used in training support vec-
tor machines. In training support vector machines for a two-class problem,
the separating margin between the two classes is maximized to improve the
generalization ability. In the kernel fuzzy classifier with ellipsoidal regions, we
tune the slopes of the membership functions so that the slope margins are
maximized.

Initially, we set the values of αi to be 1. Namely, the kernel fuzzy classifier
with ellipsoidal regions is equivalent to the classifier based on the kernel Ma-
halanobis distance. Then we tune αi so that the slope margins are maximized.
Here we maximize the margins without causing new misclassification. When
the recognition rate of the training data is not 100 percent after tuning, we
tune αi so that the recognition rate is maximized as discussed in [3]. Here we
discuss how to maximize slope margins.

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 245

Unlike the support vector machines, tuning of αi is not restricted to two
classes, but for ease of illustration we explain the concept of tuning using
two classes. In Fig. 10.2 the filled rectangle and circle show the training data,
belonging to classes i and j, that are nearest to classes j and i, respectively.
The class boundary of the two classes is somewhere between the two curves
shown in the figure. We assume that the generalization ability is maximized
when it is in the middle of the two.

In Fig. 10.3, if the datum belongs to class i, it is correctly classified because
the degree of membership for class i is larger. This datum remains correctly
classified until the degree of membership for class i is decreased, as shown in
the dotted curve. Similarly, in Fig. 10.4, if the datum belongs to class j, it
is correctly classified because the degree of membership for class j is larger.
This datum remains correctly classified until the degree of membership for
class i is increased as shown in the dotted curve. Thus, for each αi, there is an
interval of αi that makes correctly classified data remain correctly classified.
Therefore, if we change the value of αi so that it is in the middle of the
interval, the slope margins are maximized.

ci

cj

Boundary

Fig. 10.2. Concept of maximizing margins. From [12, p. 209, c©IEEE 2001]

In the following we discuss how to tune αi.

Upper and Lower Bounds of αi

Let X be the set of training data that are correctly classified for the initial
αi. Let x (∈ X) belong to class i.

If mgi(x) is the largest, there is a lower bound of αi, Li(x), to keep x
correctly classified:

Li(x) =
d2
gi

(x)

min
j �=i

h2
gj

(x)
. (10.25)

246 10 Maximum-Margin Fuzzy Classifiers

Class i Class j

xDatum

D
eg

re
e

 o
f m

em
be

rs
hi

p

0

1

Fig. 10.3. Upper bound of αi that does not cause misclassification. From [12, p.
209, c©IEEE 2001]

Class i Class j

xDatum

D
eg

re
e

 o
f m

em
be

rs
hi

p

0

1

Fig. 10.4. Lower bound of αi that does not cause misclassification. From [12, p.
209, c©IEEE 2001]

Then the lower bound Li(1) that does not cause new misclassification is
given by

Li(1) = max
x∈X

Li(x). (10.26)

Similarly, for x (∈ X) belonging to a class other than class i, we can
calculate the upper bound of αi. Let mgj (x) (j �= i) be the largest. Then the
upper bound Ui(x) of αi that does not cause misclassification of x is given by

Ui(x) =
d2
gi

(x)

min
j

h2
gj

(x)
. (10.27)

The upper bound Ui(1) that does not make new misclassification is given
by

Ui(1) = min
x∈X

Ui(x). (10.28)

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 247

In [3, p. 122], Li(l) and Ui(l) are defined as the lower and upper bounds
in which l − 1 correctly classified data are misclassified, respectively. Thus,
Li(1) and Ui(1) are the special cases of Li(l) and Ui(l).

Tuning Procedure

The correctly classified data remain correctly classified even when αi is set to
some value in the interval (Li(1), Ui(1)). The tuning procedure of αi becomes
as follows. For αi we calculate Li(1) and Ui(1) and set the value of αi with
the middle point of Li(1) and Ui(1):

αi =
1
2
(Li(1) + Ui(1)). (10.29)

We successively tune one αi after another. Tuning results depend on the
order of tuning αi, but usually tuning from α1 to αn leads to a good result.

10.1.5 Performance Evaluation

We evaluated our methods using two groups of data sets: (1) multiclass data
sets listed in Table 1.1 and (2) two-class data sets1 used in [173, 199]. In the
first group, each data set consists of one set of training and test data, and in
the second group, each data set consists of 100 sets of training and test data.
We used a Pentium III 1GHz personal computer to evaluate the method.

Multiclass Data Sets

For the basic fuzzy classifier with ellipsoidal regions, we need to set the value
of ζ, which detects the singularity of the covariance matrix and the value of
lM , in which lM − 1 is the maximum number of misclassification allowed for
tuning. We selected the value of ζ so that the recognition rate of the test data
was maximized. And we set lM = 10, which usually gives good generalization
ability.

We compared performance of the four kinds of the kernel Mahalanobis
distance:

1. the singular value decomposition-based kernel Mahalanobis distance dis-
cussed in Section 8.3.1 (denoted hereafter as “SVD”);

2. the KPCA-based Mahalanobis distance discussed in Section 8.3.2 in which
the kernel matrix is used to select the independent vectors (“KPCA I”);

3. the KPCA-based Mahalanobis distance given by (10.22) by transductive
training using the basis vectors (“KPCA II”); and

4. the KPCA-based Mahalanobis distance by transductive training using the
basis vectors and test data (“KPCA III”).

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

248 10 Maximum-Margin Fuzzy Classifiers

Because SVD-based training took a long time, we determined the value of
σ in (8.47) so that the recognition rates of the test data were the highest. Ta-
ble 10.1 shows the difference between the conventional method, in which the
subspace associated with the small eigenvalues is neglected, and the improved
method (8.47) to perform singular value decomposition for the numeral data.
“Initial” and “Final” denote the initial recognition rates of the test (train-
ing) data with the tuning parameters αi = 1 and after tuning, respectively.
“Num.” denotes the number of selected diagonal elements. From the table,
the improved method of singular value decomposition is effective to prevent
generalization ability from decreasing, especially for initial recognition rates
for linear kernels. Thus in the following experiments, we use this method to
calculate the pseudo-inverse when the training data are degenerate (numeral,
thyroid, and hiragana-50 data sets).

Table 10.1. Comparison of singular value decomposition. Reprinted from [127, p.
209] with permission from Elsevier

Type Kernel Initial Final Num.

(%) (%)

Conventional Linear 88.78 (90.00) 98.78 (98.40) 100

(σ = 10−8) γ0.01 98.90 (99.75) 99.02 (100) 206

Improved Linear 98.54 (97.28) 98.78 (98.52) 810

(σ = 10−8) γ0.01 99.39 (99.88) 99.27 (100) 810

To calculate a KPCA-based Mahalanobis distance, we need to set two
parameters, ε, which determines the minimum value of the eigenvalues and
η, which determines how strictly we select the independent vectors. From our
computational experiments, we know that the generalization ability is more
sensitive to the value of ε than that of η. In addition, the best value of ε
depends on the training data sets and kernel functions.

Thus we determined the value of η by five-fold cross-validation for the
blood cell data and made the value of η common to all training data sets and
kernel functions. Then we performed five-fold cross-validation to determine
the value of ε for each training data set and kernel function.

For linear kernels, polynomial kernels with d = [2, 3], or RBF kernels
with γ = [0.001, 0.01, 0.1, 1, 10], we performed five-fold cross-validation for
ε = [10−8, 10−7, . . . , 10−1]. We iterated cross-validation five times to decrease
the influence of random selection and determined the value of ε with the
highest average recognition rate. For KPCA I, II, and III, we determined the
parameters for KPCA II and used the values for KPCA I and III.

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 249

Table 10.2 shows the recognition rates of the test data. In the “Type”
column, (1), (2), and (3) denote that linear, polynomial, and RBF kernels
were used, respectively. For each data set the highest recognition rate is shown
in boldface. The table also includes the recognition rates for the pairwise L1
fuzzy support vector machine evaluated in Section 3.2.3, and “Basic” denotes
the conventional fuzzy classifier with ellipsoidal regions.

If the training data set is not degenerate and KPCA I (1) selects indepen-
dent vectors that span the input space, the basic fuzzy classifier, SVD (1),
and KPCA I (1) will give the same recognition rate. Except for the numeral,
thyroid, and hiragana-50 data sets, the training data sets are nondegenerate.
Thus, for these sets, the recognition rates are almost the same.

For the degenerate training data sets, the recognition rates of SVD (1) and
KPCA I (1) are inferior to that of the basic fuzzy classifier. This is especially
evident for the thyroid data set. Using nonlinear kernels, the recognition rates
were improved but still lower for the thyroid data set. In KPCA II (1), because
the basis vectors in the input space were added, the degeneracy was resolved
and the recognition rates are comparable with those of the basic fuzzy classi-
fier. For the linear kernels there were no online additions of the basis vectors.
Thus KPCA II (1) and KPCA III (1) give the same results. For nonlinear

Table 10.2. Recognition rates of the test data in %. Reprinted from [127, p. 212]
with permission from Elsevier

Type Blood Numeral Iris Thyroid H-50 H-105 H-13

SVM 92.03 99.63 97.33 97.61 99.11 99.95 99.74

Basic 91.32 99.27 97.33 95.62 98.85 100 99.34

SVD (1) 91.32 98.78 97.33 89.53 96.38 99.99 99.25

(2) 92.35 97.68 94.67 90.58 95.99 99.90 98.96

(3) 92.45 99.27 96.00 94.40 93.51 100 99.74

KPCA I (1) 91.23 99.02 96.00 87.25 97.53 100 99.43

(2) 92.87 99.27 97.33 90.14 97.25 99.99 99.86

(3) 91.35 99.39 94.67 95.01 97.57 100 99.86

KPCA II (1) 91.23 99.51 96.00 94.75 98.31 100 99.43

(2) 93.16 99.51 97.33 96.82 97.61 100 99.86

(3) 91.32 99.39 94.67 95.01 98.52 100 99.88

KPCA III (1) 91.23 99.51 96.00 94.75 98.31 100 99.43

(2) 93.23 99.51 97.33 96.76 97.55 100 99.86

(3) 91.03 99.39 94.67 95.71 98.52 100 99.88

250 10 Maximum-Margin Fuzzy Classifiers

Table 10.3. Recognition rates for test data by the Mahalanobis distance in %.
Reprinted from [127, p. 212] with permission from Elsevier

Type Blood Numeral Iris Thyroid H-50 H-105 H-13

Basic 87.45 99.63 98.67 86.41 98.79 100 98.36

SVD (1) 87.45 98.54 98.67 74.77 80.89 99.98 98.36

(2) 92.42 95.98 97.33 86.03 67.53 97.75 99.63

(3) 91.58 99.39 98.67 83.46 82.43 99.99 99.86

KPCA I (1) 88.65 96.34 98.67 72.40 94.84 100 99.15

(2) 92.29 97.93 98.67 83.72 85.36 98.90 99.90

(3) 89.52 97.20 98.67 80.25 81.13 99.96 99.84

KPCA II (1) 88.65 99.27 98.67 84.92 97.85 100 99.15

(2) 92.26 99.15 98.67 95.60 97.96 99.89 99.90

(3) 89.48 99.39 98.67 87.95 98.50 100 99.86

KPCA III (1) 88.65 99.27 98.67 84.92 97.85 100 99.15

(2) 92.16 99.27 98.67 95.68 98.42 100 99.89

(3) 89.58 99.39 98.67 90.32 98.48 100 99.87

kernels KPCA II shows better performance than SVD. But there is not much
difference between KPCA II and KPCA III. This means that the training
data and the basis vectors in the input space are sufficient to represent the
space spanned by the test data.

Performance of the SVM and that of the KPCA-based methods are com-
parable.

Table 10.3 shows the recognition rates of the test data without tuning the
tuning parameters. This means that the classifier classifies a datum according
to the (kernel) Mahalanobis distance. The recognition rates that are higher
than those by tuning are shown in boldface.

From Tables 10.2 and 10.3, in most cases by tuning the tuning parameters,
the recognition rates of the test data are improved. The effect of tuning is
especially evident for blood cell and thyroid data sets. But for the iris data
set, the recognition rates were not improved by tuning for all the cases tried.

Each classifier has a different number of parameters to optimize. Thus,
it is difficult to compare the training time of each classifier fairly. Therefore,
here we only compare the training time of fuzzy classifiers for the parame-
ters determined by model selection. Table 10.4 lists the training time of each
method for the given conditions. In the table, 0 means that the calculation
time is shorter than 0.5 second. Because training of the classifiers for the iris
data set was very short, we do not include the result in the table.

10.1 Kernel Fuzzy Classifiers with Ellipsoidal Regions 251

We do not include the training time of KPCA III because all the test data
were added at once. For KPCA III, we measured the time to process one
unknown datum for classification by the fast online method, but it was too
short to be measured correctly.

Training of the basic fuzzy classifier is the fastest, and training of KPCA
I and II is the second fastest. Training of SVD is the slowest due to singular
value decomposition. From this table the effectiveness of the KPCA-based
methods is evident.

Table 10.4. Training time comparison in seconds. Reprinted from [127, p. 214] with
permission from Elsevier

Type Blood Numeral Thyroid H-50 H-105 H-13

Basic 0 0 0 2 8 1

SVD (1) 228 2 96,660 98 906 991

(2) 218 2 96,120 101 933 885

(3) 222 2 94,440 100 841 983

KPCA I (1) 2 0 31 7 52 5

(2) 10 1 194 33 239 31

(3) 5 0 364 21 40 21

KPCA II (1) 2 0 31 8 69 6

(2) 12 1 201 50 395 35

(3) 6 0 384 33 72 23

Two-Class Data Sets

We compared recognition rates of the SVM, the conventional fuzzy classifier
with ellipsoidal regions, KPCA I, and KPCA II using the two-class benchmark
data sets. As a reference we used recognition performance of the SVM listed
in the home page.2

Throughout the experiment, we set η = 10−5 for independent data selec-
tion. As for the determination of the values of γ and ε, first we fixed ε to
10−7, and performed five-fold cross-validation of the first five training data
sets for γ = [0.001, 0.01, 0.1, 1, 10] and selected the median of the best value
for each data set. Then fixing the value of γ with the median we performed
five-fold cross-validation for ε = [10−8, 10−7, . . . , 10−1, 0.5]. We also determine

2http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

252 10 Maximum-Margin Fuzzy Classifiers

the value of ζ by five-fold cross-validation. For the ringnorm and titanic data
sets we performed cross-validation, including d = [2, 3].

Table 10.5 lists the mean classification errors and standard deviations with
the ± symbol. Comparing Basic and KPCA I, except for the breast cancer
and flare-solar data sets, KPCA I is better than or comparable to the con-
ventional fuzzy classifier with ellipsoidal regions (Basic). KPCA II is better
than the conventional fuzzy classifier with ellipsoidal regions and better than
or comparable to KPCA I. Thus, the generalization improvement of KPCA
II over the conventional fuzzy classifier with ellipsoidal regions is clear. As for
KPCA II and the SVM, except for the ringnorm and splice data sets, they are
comparable. To improve the recognition performance for the ringnorm and
splice data sets we need to do more extensive parameter survey. We tested
the performance of KPCA III for these data sets, but the generalization per-
formance was not improved. This may mean that the transductive training
using the basis vectors was enough for these data sets.

Table 10.5. Comparison among the four methods. Reprinted from [127, p. 215]
with permission from Elsevier

Data SVM Basic KPCA I KPCA II

Banana 11.5±0.7 35.8±4.2 10.9±0.6 10.9±0.6

Breast cancer 26.0±4.7 28.9±5.3 33.5±4.9 26.5±4.4

Diabetes 23.5±1.7 25.8±2.2 25.3±2.0 25.3±2.0

German 23.6±2.1 27.3±2.6 25.2±2.5 25.2±2.4

Heart 16.0±3.3 20.2±3.7 16.5±3.6 16.5±3.6

Image 3.0±0.6 11.4±1.2 3.1±0.9 2.9±0.7

Ringnorm 1.7±0.1 27.6±1.7 3.6±0.4 3.2±0.3

Flare-solar 32.4±1.8 34.6±1.8 47.5±2.0 34.4±2.3

Splice 10.9±0.7 15.9±1.1 15.2±1.0 15.2±1.0

Thyroid 4.8±2.2 8.9±2.8 4.9±2.4 5.0±2.2

Titanic 22.4±1.0 23.0±1.1 23.0±1.3 22.5±1.2

Twonorm 3.0±0.2 3.6±0.4 2.6±0.2 2.6±0.3

Waveform 9.9±0.4 19.5±1.9 12.0±0.9 11.9±0.9

10.1.6 Summary

In this section we discussed a kernel fuzzy classifier with ellipsoidal regions,
in which the input space is mapped into a high-dimensional feature space and
a fuzzy classifier is generated in the feature space.

10.2 Fuzzy Classifiers with Polyhedral Regions 253

To speed up training, we used the KPCA-based method to calculate a
Mahalanobis distance in the feature space. To improve generalization ability
when training data are degenerate, we discussed transductive training of the
classifier. Namely, using the basis vectors in the input space as unlabeled data,
we span the space by the Gram-Schmidt orthogonalization. We extended this
method to online training.

Using the multiclass and two-class classification benchmark data sets, we
confirmed the training speedup and improvement of the generalization ability
over the conventional fuzzy classifier with ellipsoidal regions.

10.2 Fuzzy Classifiers with Polyhedral Regions

The generalization of a classifier depends on how well we approximate the
input region for each class. Approximation by polyhedrons is one way to im-
prove the approximation accuracy. In [3, 224], starting from an initial convex
hull for a class, the convex hull is expanded for the training data that are
not in the convex hull. By this method, however, the number of generated
facets explodes as the numbers of input variables and training data increase.
To overcome this problem, in this section we discuss a different approach. We
start from a hyperbox that includes all the class data and cut the hyperbox
in the region where class data overlap [245]. We evaluate the performance of
the method for some benchmark data sets.

10.2.1 Training Methods

Concept

In the following we discuss how to approximate a region for class i by a convex
hull:

1. As shown in Fig. 10.5, we first approximate the class region by a hyper-
box calculating the minimum and maximum values of the training inputs
belonging to class i.

2. We sequentially read data belonging to classes other than class i. Let q
be the current datum. If q is in the convex hull (initially the hyperbox),
we cut it so that class i data are on the facet or inside the convex hull
and that the facet is far from q. This is the same idea with support vector
machines that maximize margins. In Fig. 10.5, let ci be the center of class
i. To make class i data in the convex hull or on the facet, we project class
i data in the direction orthogonal to q − ci. Then, let p′ be the datum
nearest to q on the line that includes q − ci. If we cut the convex hull
by the facet that goes through p′ and that is orthogonal to q − ci, the
distance between q and the facet is not maximized. Thus as shown in Fig.
10.6, we cut the convex hull by the facet that goes through p′ and that is
orthogonal to q − p′.

254 10 Maximum-Margin Fuzzy Classifiers

: Class i
: Class j

ci

qp’

Fig. 10.5. Extracting a boundary datum. From [245, p. 674]

ci

q
p’

: Class i
: Class j

Fig. 10.6. Class i data exist on the negative side of the hyperplane. From [245, p.
674]

Then, as shown in Figs. 10.7 and 10.8, if datum q and class i data
are outside of facet h1, we rotate the orthogonal vector of the facet from
q − ci to q − p′ until the facet touches the class i data (the facet h2 in
each figure). By this method, however, two convex hulls may overlap as
shown in Fig. 10.8, but we do not consider this case here.

According to this procedure, if the data of other classes are in the convex
hull, the convex hull is cut by a facet. Then in the case shown in Fig. 10.9,
the class i convex hull is not cut by a facet. In this case, although the data in

10.2 Fuzzy Classifiers with Polyhedral Regions 255

ci

qp’

h1 h2

: Class i
: Class j

Fig. 10.7. Class i data exist on both sides of the hyperplane. From [245, p. 674]

ci q

p’

h1

h2

: Class i
: Class j

Fig. 10.8. Class i data exist on the positive side of the hyperplane. From [245, p.
674]

the shaded region are nearer to class j than to class i, they are classified into
class i. To avoid this we use data that are near the convex hull (initially the
hyperbox). Namely, as shown in Fig. 10.10, we expand the convex hull and
use the data in the expanded convex hull.

In the following, we discuss the detailed procedure of convex hull genera-
tion, definition of membership functions, and tuning of membership functions.

Generation of Hyperbox

Let the set of m-dimensional data for class i be Xi . Then for each input
variable we calculate the minimum and maximum values:

256 10 Maximum-Margin Fuzzy Classifiers

: Class i
: Class j

Fig. 10.9. Degradation of generalization ability. From [245, p. 674]

: Class i
: Class j

Fig. 10.10. Generalization improvement by expansion of a polyhedron. From [245,
p. 675]

Vij = max
p∈Xi

pj for j = 1, . . . , m, (10.30)

vij = min
p∈Xi

pj for j = 1, . . . , m, (10.31)

and we generate a hyperbox.

Generation of Polyhedral Regions

In the following we discuss in detail how to cut the hyperbox for class i by
facets:

1. We define the center of class i by the average of class i data:

ci =
1

|Xi |
∑
p∈Xi

p. (10.32)

10.2 Fuzzy Classifiers with Polyhedral Regions 257

2. As shown in Fig. 10.11, we expand the convex hull by s d where d is the
distance from the center to a facet and s is an expansion parameter. We
call this the expanded convex hull. Then we read a datum not belonging
to class i, q (q ∈ Xk, k �= i), sequentially and check if it is in the expanded
convex hull. The expansion parameter s specifies how much the convex
hull is expanded, and for s = 0, we use only the data in the convex hull.
As s increases, the number of facets increases.

d

c

s d

Fig. 10.11. An expanded polyhedron. From [245, p. 675]

We first check if the datum is in the expanded hyperbox. If it is, we further
check if it is in the convex hull. Namely, if for qj (j = 1, . . . , m)

vij − d′
j s < qj < Vij + d′′

j s (10.33)

is satisfied, q is in the hyperbox, where d′
j , d

′′
j are the one-dimensional

distances given by

d′
j = cj − vij , (10.34)

d′′
j = Vij − cj , (10.35)

respectively.
If q is in the hyperbox, we further check if it is in the convex hull. Let

the facets that form the convex hull for class i be Fij(j = 1, . . . , f), where
f is the number of facets. Let Fij go through pj and its outer orthogonal
vector be nij . As shown in Fig. 10.12, we project q − pj and pj − ci in
the direction of nij . If

nT
ij (q − pj) ≤ snT

ij(p
j − ci) for j = 1, . . . , f

is satisfied, q is in the convex hull. If the point is in the convex hull, go to
Step 3. Otherwise, read the next datum. If all the data have been read,
we finish training.

258 10 Maximum-Margin Fuzzy Classifiers

pj

q
ci

nij

Fij

n (p − c)ij i
j s nT(p − c)ij

j
i

n (q − p)ij
T

T

j

Fig. 10.12. Check if a datum is in the expanded polyhedron. From [245, p. 675]

3. We find the class i datum p′, which is farthest in the direction from the
class i center ci to the datum q:

p′ = arg max
p∈Xi

(q − ci)T (p − ci). (10.36)

Go to Step 4.
4. We generate a facet that goes through p′, which includes class i data on

the facet or in the convex hull, and from which q is the farthest in the
outer direction of the facet. Here, the orthogonal vector of the facet, which
goes through p′ and in which q is the farthest in the outer direction of
the facet, is q − p′.

If we generate a facet with q − p′ as the orthogonal vector, there may
be cases where class i data are outside of the facet. To avoid this, we check
if the data are outside of the facet with q − p′ as the orthogonal vector.
If there are no data (see Fig. 10.6), we generate the facet and go back to
Step 2. If there are (see Fig. 10.7), go to Step 5. Here, for p ∈ Xi, if

(q − p′)T (p′ − p) ≤ 0 (10.37)

is satisfied, class i datum p is within the facet, and if

(q − p′)T (p′ − p) > 0 (10.38)

is satisfied, it is outside of the facet.
5. We rotate the orthogonal vector of the facet from q − ci to q − p′ and

stop rotation at the point where class i data are included on the facet. As
shown in Fig. 10.13 (a), for the orthogonal vector q − p′, let there be o
data outside of the facet, and let p′′

k(k = 1, 2, . . . , o) and a and b be

a = q − ci, (10.39)
b = q − p′. (10.40)

10.2 Fuzzy Classifiers with Polyhedral Regions 259

ci

qp’

a

b

p"

a

b

p"

p’

t (b − a)

k k

k

(a) (b)

: Class i
: Class j

Fig. 10.13. Rotation of a hyperplane. From [245, p. 676]

As shown in Fig. 10.13 (b), let p′′
k be on the facet and p′ − p′′

k be the
orthogonal vector. We define the parameter tk for rotation by

(a + tk(b − a))T (p′ − p′′
k) = 0. (10.41)

We denote the minimum tk by t:

t = min
k=1,...,o

tk. (10.42)

To determine the facet with a minimum rotation, we determine the or-
thogonal vector n by

n = a + t(b − a). (10.43)

Next, we generate the facet that goes through p′ with the orthogonal
vector n and return to Step 2.

Membership Functions

We define a membership function in which the degree of membership is 1 at
the center of the convex hull and it decreases as the location moves away from
the center.

We define a one-dimensional membership function, mi(p), of datum p for
the facet Fi by

mi(p) = exp (hi(p)) = exp
(

−di(p)
αc

)
, (10.44)

where hi(p) is a tuning distance, αc is a tuning parameter for class c, and
di(p) is given by

260 10 Maximum-Margin Fuzzy Classifiers

di(p) =

⎧⎨
⎩

aT
i (p − c)
|ai|wi

aT
i (p − c) ≥ 0,

0 aT
i (p − c) < 0,

(10.45)

where ai is the outer orthogonal vector for the facet and wi is the distance
from the center to the facet Fi.

Then using (10.44), the membership function of p for the convex hull,
m(p), is given by

m(p) = min
i

mi(p) = exp
(
− max

i
hi(p)

)
. (10.46)

Tuning of Membership Functions

We can improve the recognition performance by tuning membership functions.
In the following, we explain the idea [3].

Now suppose we tune the tuning parameter αi. Up to some value we can
increase or decrease αi without making the correctly classified datum x be
misclassified. Thus we can calculate the upper bound Ui(x) or lower bound
Li(x) of αi that causes no misclassification of x. Now let Ui(1) and Li(1)
denote the upper and lower bounds that do not make the correctly classified
data be misclassified, respectively. Likewise, Ui(l) and Li(l) denote the upper
and lower bounds in which l − 1 correctly classified data are misclassified,
respectively.

Similarly, if we increase or decrease αi, misclassified data may be correctly
classified. Let βi(l) denote the upper bound of αi that is smaller than Ui(l)
and that resolves misclassification. Let γi(l) denote the lower bound of αi that
is larger than Li(l) and that resolves misclassification.

Then the next task is to find which interval among (Li(l), γi(l)) and (βi(l),
Ui(l)) (l = 1, . . .) gives the maximum recognition rate. To limit the search
space, we introduce the maximum l, i.e., lM . Let (Li(l), γi(l)) be the in-
terval that gives the maximum recognition rate of the training data among
(Li(k), γi(k)) and (βi(k), Ui(k)) for k = 1, . . . , lM . Then even if we set any
value in the interval to αi, the recognition rate of the training data does not
change but the recognition rate of the test data may change. To control the
generalization ability, we set αi as follows:

αi = βi(l) + δ(Ui(l) − βi(l)) (10.47)

for (βi(l), Ui(l)), where δ satisfies 0 < δ < 1 and

αi = γi(l) − δ(γi(l) − Li(l)) (10.48)

for (Li(l), γi(l)).
In the following performance evaluation, we set lM = ∞. The value of δ

does not affect the recognition rate of the test data very much, and we set
δ = 0.1.

10.2 Fuzzy Classifiers with Polyhedral Regions 261

10.2.2 Performance Evaluation

Using the numeral data, thyroid data, blood cell data, hiragana-13 data,
hiragana-50 data, and hiragan-105 data listed in Table 1.1, we compared the
performance of the fuzzy classifier with polyhedral regions (FCPR) discussed
in this section with that of the conventional fuzzy classifier with polyhedral
regions based on the dynamic convex hull generation method (C-FCPR) [224].
The performance of the FCPR was measured with s = 0 and the best recog-
nition rate of the test data obtained by changing s. We used a Pentium III
(1GHz) personal computer.

If the number of inputs is large, the C-FCPR takes a long time generating
polyhedral regions. Thus, in this simulation, we bounded the number of facets
to be generated by 5000.

Table 10.6 shows the results for the FCPR and C-FCPR. For compari-
son, we also include the results of the fuzzy classifier with ellipsoidal regions
(FCER), and the one-against-all support vector machine (SVM). In the table,
the “Parm” column shows the parameter value and for example, s5 means
that 5 is set to s and d2 and γ0.5 mean that polynomial kernels with degree
2 and RBF kernels with γ = 0.5 are used for the support vector machine,
respectively. “Initial” means the recognition rate before tuning membership
functions, and “Final” means the recognition rates after tuning membership
functions. If the recognition rates of the training data were not 100 percent,
they are shown in parentheses.

The training time of the FCPR with s = 0 is much shorter than that of
C-FCPR, and the recognition rates of the test data are better. For the FCPR
with nonzero s, training was slowed, but the recognition rates of the test
data were improved and comparable with those of the fuzzy classifier with
ellipsoidal regions and the one-against-all support vector machine.

In evaluating the thyroid data, for the conventional FCPR, the number
of variables was decreased from 21 to 5 so that the convex hulls could be
generated. For the FCPR, it was not necessary to reduce the number.

Figure 10.14 shows the recognition rates of the hiragana-50 data for the
change of s. For 0 ≤ s < 2, the recognition rate of the test data increases, but
for s larger than 2, the recognition rate decreases.

Summary

In this section, we discussed a fuzzy classifier with polyhedral regions (FCPR).
Initially, we generate the hyperbox that includes training data belonging to a
class. Then we generate the convex hull that approximates the class region,
cutting the hyperbox by hyperplanes so that class separability is maximized.

For all the data sets used in the study, training by the FCPR with s = 0
was very fast but the recognition rates of the test data were lower for some
data sets than those by other methods. Thus we need to set positive s, which
controls the expansion of convex hulls. From the simulation results (only the

262 10 Maximum-Margin Fuzzy Classifiers

Table 10.6. Comparison of recognition rates

Data Method Parm Initial Final Time

(%) (%) (s)

FCPR s5 99.63 99.63 0.10

FCPR s0 99.51 99.51 0.10

Numeral C-FCPR 99.39 99.39 251

FCER 99.63 (99.63) 99.39 (99.88) 0.14

SVM d2 — 99.88 1.93

FCPR s0.004 99.21 (99.92) 99.18 (99.97) 6

FCPR s0 99.18 (99.92) 99.18 (99.97) 5

Thyroid C-FCPR 98.16 (98.25) 98.22 (99.81) 72

FCER 86.41 (86.77) 97.29 (99.02) 9

SVM d2 — 98.02 (99.34) 7

FCPR s2 88.29 (94.51) 90.23 (96.45) 101

FCPR s0 88.81 (94.12) 89.29 (95.83) 15

Blood cell C-FCPR 82.13 (89.09) 86.39 (93.51) 1514

FCER 87.45 (92.64) 92.03 (96.29) 3

SVM γ0.5 — 92.87(99.23) 10

FCPR s5 98.56 (99.51) 98.92 (99.84) 4380

FCPR s0 97.34 (98.97) 97.57 (99.31) 17

Hiragana-13 C-FCPR 94.78 (99.45) 97.74 (99.94) 8161

FCER 99.41 (99.84) 99.59 (99.96) 9

SVM γ1 — 99.77 131

FCPR s2 96.07(99.87) 96.23(99.98) 840

Hiragana-50 FCPR s0 90.69 (99.50) 90.78 (99.89) 11

FCER 98.83 (99.87) 98.85 107

SVM d2 — 98.89 238

FCPR s0.6 99.90 99.90 203

Hiragana-105 FCPR s0 97.82 97.82 25

FCER 99.94 (99.92) 100 512

SVM d2 — 100 836

10.2 Fuzzy Classifiers with Polyhedral Regions 263

90

92

94

96

98

100

0 2 4 6 8 10

Test
Train.

R
ec

og
ni

tio
n

ra
te

 (
%

)

s

Fig. 10.14. Recognition rates of the hiragana-50 data for the different values of s.
From [245, p. 679]

result of the hiragana-50 data was included in this book), the optimal value of
s was around the point where the recognition rate of the training data reached
a peak value.

11

Function Approximation

Support vector regressors, which are extensions of support vector machines,
have shown good generalization ability for various function approximation and
time series prediction problems (e.g., [171, 174]). In this chapter, we discuss
extensions of various support vector machines for pattern classification to
function approximation: L1 and L2 support vector regressors, LP support
vector regressors, LS support vector regressors, and so on. Then we show
performance comparison of L1 and L2 support vector regressors including the
training characteristics [111, 112].

11.1 Optimal Hyperplanes

In function approximation, we determine the input-output relation using the
input-output pairs (xi, yi) (i = 1, . . . , M), where xi is the ith m-dimensional
input vector, yi is the ith scalar output, and M is the number of training
data.

In support vector regression, we map the input space into the high-
dimensional feature space, and in the feature space we determine the optimal
hyperplane given by

f(x) = wT g(x) + b, (11.1)

where w is the l-dimensional weight vector, g(x) is the mapping function that
maps x into the l-dimensional feature space, and b is the bias term.

In linear regression usually the square error function shown in Fig. 11.1
(a) is used, where r is a residual and r = y − f(x). Using this error function,
however, the large residuals caused by outliers worsen the estimation accuracy
significantly. To avoid this, in support vector regressors, the piecewise linear
function, shown in Fig. 11.1 (b), which is originally used for robust function
approximation, is used:

E(r) =
{

0 for |r| ≤ ε,
|r| − ε otherwise, (11.2)

266 11 Function Approximation

E

+ε−ε r

E

r0 0

(a) (b)

Fig. 11.1. Error functions: (a) A square function; (b) a piecewise linear function

where ε is a small positive value.
Now define the residual of output y and the estimate f(x) by

D(x, y) = y − f(x). (11.3)

According to (11.2), the ideal estimation is realized when all the absolute
residuals are within ε, namely

−ε ≤ D(x, y) ≤ +ε, (11.4)

which is rewritten as follows:

|D(x, y)| ≤ ε. (11.5)

Figure 11.2 illustrates this; in the original input-output space, if all the
training data are within the zone with radius ε shown in Fig. 11.2 (a), the
ideal estimation is realized. We call this ε-insensitive zone.1 In the feature-
input-output space, this tube corresponds to the straight tube shown in Fig.
11.2 (b).

There are infinite possibilities of solutions that satisfy (11.5). Here, we con-
sider obtaining a solution with the maximum generalization ability. Assuming
that all the training data satisfy (11.5), the datum that satisfies D(x, y) = ±ε
is the farthest from the hyperplane. We call the associated distance the margin.

1Pérez-Cruz et al. [187] extended a one-dimensional output to a multidimensional
one, where data are constrained in the hyperspherical insensitive zone with radius
ε.

11.1 Optimal Hyperplanes 267

y
+ε

−ε

g(x)

y

x0 0

(a) (b)

Fig. 11.2. Insensitive zone: (a) In the original input space, and (b) in the feature
space

Maximizing the margin leads to maximizing the possibility that the unknown
data get into this tube. Thus, it leads to maximizing the generalization ability.

The distance from the hyperplane D(x, y) = 0 to a datum (x, y) is given
by |D(x, y)|/‖w∗‖, where w∗ is given by

w∗ = (1,−wT)T . (11.6)

Assuming that the maximum distance of data from the hyperplane is δ,
all the training data satisfy

|D(x, y)|
‖w∗‖ ≤ δ. (11.7)

Namely,
|D(x, y)| ≤ δ‖w∗‖. (11.8)

From (11.5) and (11.8), the data that are farthest from the hyperplane
satisfy |D(x, y)| = ε. Thus

δ‖w∗‖ = ε. (11.9)

Therefore, to maximize the margin δ, we need to minimize ‖w∗‖. Because
‖w∗‖2 = ‖w‖2 + 1 holds, minimizing ‖w‖ leads to maximizing the margin.

Now the regression problem is solved by minimizing

1
2
‖w‖2 (11.10)

subject to the constraints

268 11 Function Approximation

yi − wT g(xi) − b ≤ ε for i = 1, . . . , M, (11.11)
wT g(xi) + b − yi ≤ ε for i = 1, . . . , M. (11.12)

In the formulation, we assumed that all the training data are within the
tube with radius ε. To allow the data that are outside of the tube to exist,
we introduce the nonnegative slack variables ξi and ξ∗

i as shown in Fig. 11.3,
where

ξi =
{

0 for D(xi, yi) − ε ≤ 0,
D(xi, yi) − ε otherwise, (11.13)

ξ∗
i =

{
0 for ε − D(xi, yi) ≤ 0,
ε − D(xi, yi) otherwise. (11.14)

y
+ε

−ε
ξi

ξk
*

g(x)0

Fig. 11.3. Slack variables

Now the regression problem is solved by minimizing

Q(w, b, ξ, ξ∗) =
1
2
‖w‖2 + C

M∑
i=1

(ξp
i + ξ∗p

i) (11.15)

subject to the constraints

yi − wT g(xi) − b ≤ ε + ξi for i = 1, . . . , M,

wT g(xi) + b − yi ≤ ε + ξ∗
i for i = 1, . . . , M, (11.16)

ξi ≥ 0, ξ∗
i ≥ 0 for i = 1, . . . , M,

where C is the margin parameter that determines the trade-off between the
magnitude of the margin and the estimation error of the training data and p is

11.2 L1 Soft-Margin Support Vector Regressors 269

either 1 or 2. If p = 1, we call the support vector regressor the L1 soft-margin
support vector regressor (L1 SVR) and p = 2, the L2 soft-margin support
vector regressor (L2 SVR).

The optimization problem given by (11.15) and (11.16) is solved by the
quadratic programming technique, by converting (11.15) and (11.16) into the
dual problem.

11.2 L1 Soft-Margin Support Vector Regressors

In this section we derive the dual problem of the L1 soft-margin support vector
regressors. Introducing the Lagrange multipliers αi, α

∗
i , ηi, and η∗

i (≥ 0), we
convert the original constrained problem into an unconstrained one:

Q(w, b, ξ, ξ∗,α,α∗,η,η∗)

=
1
2
‖w‖2 + C

M∑
i=1

(ξi + ξ∗
i) −

M∑
i=1

αi (ε + ξi − yi + wT g(x) + b)

−
M∑
i=1

α∗
i (ε + ξ∗

i + yi − wT g(x) − b) −
M∑
i=1

(ηi ξi + η∗
i ξ∗

i). (11.17)

This function has the saddle point that corresponds to the optimal solution
for the original problem. At the optimal solution, the partial derivatives of Q
with respect to w, b, ξ, and ξ∗ vanish. Namely,

∂Q(w, b, ξ, ξ∗,α,α∗,η,η∗)
∂w

= w −
M∑
i=1

(αi − α∗
i)g(xi) = 0, (11.18)

∂Q(w, b, ξ, ξ∗,α,α∗,η,η∗)
∂b

=
M∑
i=1

(α∗
i − αi) = 0, (11.19)

∂Q(w, b, ξ, ξ∗,α,α∗,η,η∗)
∂ξi

= C − αi − ηi = 0 for i = 1, . . . , M, (11.20)

∂Q(w, b, ξ, ξ∗,α,α∗,η,η∗)
∂ξ∗

i

= C − α∗
i − η∗

i = 0 for i = 1, . . . , M. (11.21)

From (11.18),

w =
M∑
i=1

(αi − α∗
i)g(xi). (11.22)

Therefore, using αi and α∗
i , f(x) is expressed by

f(x) =
M∑
i=1

(αi − α∗
i)g

T (xi)g(x) + b. (11.23)

270 11 Function Approximation

Substituting (11.18) to (11.21) into (11.17), we obtain the following dual
problem. Maximize

Q(α,α∗) = −1
2

M∑
i,j=1

(αi − α∗
i) (αj − α∗

j)g
T (xi)g(xj)

−ε

M∑
i=1

(αi + α∗
i) +

M∑
i=1

yi (αi − α∗
i) (11.24)

subject to the constraints:

M∑
i=1

(αi − α∗
i) = 0, (11.25)

0 ≤ αi ≤ C, 0 ≤ α∗
i ≤ C for i = 1, . . . , M. (11.26)

The optimal solution must satisfy the following KKT complementarity
conditions:

αi (ε + ξi − yi + wT g(xi) + b) = 0 for i = 1, . . . , M, (11.27)
α∗

i (ε + ξ∗
i + yi − wT g(xi) − b) = 0 for i = 1, . . . , M, (11.28)

ηi ξi = (C − αi) ξi = 0 for i = 1, . . . , M, (11.29)
η∗

i ξ∗
i = (C − α∗

i) ξ∗
i = 0 for i = 1, . . . , M. (11.30)

From (11.29), when 0 < αi < C, ξi = 0 holds. Likewise, from (11.30), when
0 < α∗

i < C, ξ∗
i = 0 holds. When either of them is satisfied, in (11.27)

or (11.28) the equation in the parentheses vanishes. Namely, either of the
following equation holds:

ε − yi + wT g(xi) + b = 0 for 0 < αi < C, (11.31)

ε + yi − wT g(xi) − b = 0 for 0 < α∗
i < C. (11.32)

This means that for the datum with the residual y − f(x) = +ε, αi satisfies
0 < αi < C, and the datum with the residual y − f(x) = −ε, 0 < α∗

i < C.
Thus, b satisfies

b = yi − wT g(xi) − ε for 0 < αi < C, (11.33)

b = yi − wT g(xi) + ε for 0 < α∗
i < C. (11.34)

In calculating b, to avoid calculation errors, we average bs that satisfy (11.33)
and (11.34).

From (11.29) and (11.30), if either ξi or ξ∗
i is not zero, namely, the datum

is outside of the tube of radius ε, αi equals C when the datum is above the
tube and α∗

i equals C when the datum is under the tube.
From (11.27) and (11.28), when data satisfy |y−f(x)| < ε, both αi and α∗

i

are zero, and these data do not contribute in constructing the function given

11.3 L2 Soft-Margin Support Vector Regressors 271

by (11.23). Conversely, for the data that satisfy |y − f(x)| ≥ ε, αi and α∗
i are

not zero, and they contribute in constructing the function. The training data
xi with 0 < αi ≤ C or 0 < α∗

i ≤ C are called support vectors, especially those
with 0 < αi < C or 0 < α∗

i < C, unbounded support vectors, and those with
αi = C or α∗

i = C, bounded support vectors.
Define

H(x,x′) = gT (x)g(x). (11.35)

Then H(x,x′) satisfies Mercer’s condition and is called a kernel. Using kernels,
we need not treat the high-dimensional feature space explicitly.

11.3 L2 Soft-Margin Support Vector Regressors

In this section we derive the dual problem of the L2 soft-margin support
vector regressors. Introducing the Lagrange multipliers αi and α∗

i , we convert
the original constrained problem into an unconstrained one:

Q(w, b, ξ, ξ∗,α,α∗)

=
1
2
‖w‖2 +

C

2

M∑
i=1

(ξ2
i + ξ∗2

i) −
M∑
i=1

αi (ε + ξi − yi + wT g(x) + b)

−
M∑
i=1

α∗
i (ε + ξ∗

i + yi − wT g(x) − b). (11.36)

Here, unlike the L1 support vector regressor, we do not need to introduce the
Lagrange multipliers associated with ξi and ξ∗

i .
This function has the saddle point that corresponds to the optimal solution

for the original problem. For the optimal solution, the partial derivatives of
Q with respect to w, b, ξ, and ξ∗ vanish. Namely,

∂Q(w, b, ξ, ξ∗,α,α∗)
∂w

= w −
M∑
i=1

(αi − α∗
i)g(xi) = 0, (11.37)

∂Q(w, b, ξ, ξ∗,α,α∗)
∂b

=
M∑
i=1

(α∗
i − αi) = 0, (11.38)

∂Q(w, b, ξ, ξ∗,α,α∗)
∂ξi

= C ξi − αi = 0 for i = 1, . . . , M, (11.39)

∂Q(w, b, ξ, ξ∗,α,α∗)
∂ξ∗

i

= C ξ∗
i − α∗

i = 0 for i = 1, . . . , M. (11.40)

From (11.37),

w =
M∑
i=1

(αi − α∗
i)g(xi). (11.41)

272 11 Function Approximation

Therefore, using αi and α∗
i , f(x) is expressed by

f(x) =
M∑
i=1

(αi − α∗
i) H(xi,x) + b, (11.42)

where H(xi,x) = gT (xi)g(x).
Substituting (11.37) to (11.40) into (11.36), we obtain the following dual

problem. Maximize

Q(α,α∗) = −1
2

M∑
i,j=1

(αi − α∗
i) (αj − α∗

j)
(

H(xi,xj) +
δij

C

)

−ε
M∑
i=1

(αi + α∗
i) +

M∑
i=1

yi (αi − α∗
i) (11.43)

subject to the constraints:

M∑
i=1

(αi − α∗
i) = 0, (11.44)

αi ≥ 0, α∗
i ≥ 0 for i = 1, . . . , M, (11.45)

where δij is Kronecker’s delta function.
The optimal solution must satisfy the following KKT complementarity

conditions:

αi (ε + ξi − yi + wT g(xi) + b) = 0 for i = 1, . . . , M, (11.46)
α∗

i (ε + ξ∗
i + yi − wT g(xi) − b) = 0 for i = 1, . . . , M. (11.47)

Thus, αi = 0, α∗
i = 0 or

b = yi − wT g(xi) − ε − αi

C
for αi > 0, (11.48)

b = yi − wT g(xi) + ε +
αi

C
for α∗

i > 0. (11.49)

From (11.46) and (11.47), when data satisfy |y−f(x)| < ε, both αi and α∗
i

are zero, and these data do not contribute in constructing the function given
by (11.42). The data xi with nonzero αi are called support vectors.

Comparing L1 and L2 support vector regressors, the latter does not have
bounded support vectors and the Hessian matrix is positive definite.

Model selection, i.e., selection of optimal parameters: ε, C, and γ for RBF
kernels, is a difficult task for support vector regressors. Several methods have
been proposed. Ito and Nakano [118] proposed determining these parameters
by alternating training of a support vector regressor (determination of αi and
α∗

i) and optimizing the parameters by steepest descent for the cross-validation
data. This method works for L2 support vector regressors but not for L1
support vector regressors due to the nonsmooth output for the parameter ε.

11.4 Training Speedup 273

11.4 Training Speedup

Support vector regressors have all the advantages and disadvantages that sup-
port vector machines have. Because a support vector regressor is expressed by
a quadratic optimization problem, the solution is globally optimal. However,
because we usually use nonlinear kernels, we need to solve the dual opti-
mization problem whose number of variables is twice the number of training
data. Therefore, if the number of training data is very large, training becomes
difficult. To solve this problem, as discussed in Section 5.2, we can use the
decomposition technique. Then, in selecting a working set, should we select
αi and α∗

i simultaneously? Liao, Lin, and Lin [149] showed that there is not
much difference in convergence in selecting both or either.

Usually, we combine the primal-dual interior-point method with the de-
composition technique. But, similar to support vector machines, many meth-
ods that do not use QP solvers have been developed. Mattera, Palmieri, and
Haykin [163] redefined variables αi and α∗

i in (11.24) to (11.26) by ui = α∗
i −αi

and |ui| = α∗
i + αi and proposed solving the quadratic programming problem

by optimizing two variables ui and uj at a time. According to the constraint
given by (11.25), this results in optimizing one variable at a time. In each
training cycle, all the M(M − 1)/2 pairs of variables are selected and opti-
mized, and when all the changes in the variables are within the specified limit,
training is terminated. This is similar to the sequential minimal optimization
(SMO) algorithm for pattern classification [190]. According to the simulations
for the Lorenz chaotic process, the method was faster for a small value of C
(C = 0.1) than the QP solver. But it slowed down for large C (C = 10, 100).

Vogt [262] extended SMO for function approximation when the bias term
is not present. Veropoulos [259, pp. 104–6] extended the kernel Adatron to
function approximation. Kecman, Vogt, and Huang [130] proved that these
algorithms are equivalent.

De Freitas, Milo, Clarkson, Niranjan, and Gee [72] used the Kalman fil-
tering technique for sequential training of support vector regressors.

Anguita, Boni, and Pace [17] proposed speeding up training and reduce
memory storage when the training inputs are positioned on a grid using the
fact that the matrix associated with the kernel is expressed by the Toeplitz
block matrix [96]. They showed the effectiveness of the method for an image
interpolation problem.

In the following we extend SMO for support vector regressors, increasing
the working set size from two and optimizing the variables in the working
set by the steepest ascent method [111, 112]. Calculations of corrections of
variables in the working set include inversion of the associated Hessian matrix.
But because the Hessian matrix is not guaranteed to be positive definite, we
calculate the corrections only for the linearly independent variables in the
working set.

274 11 Function Approximation

11.5 Steepest Ascent Methods

We change the notations: α∗
i = αM+i and ξ∗

i = ξM+i. Then the optimiza-
tion problem for the L1 support vector regressor given by (11.24) to (11.26)
becomes as follows. Maximize

Q(α) = −1
2

M∑
i,j=1

(αi − αM+i) (αj − αM+j) H(xi,xj)

+
M∑
i=1

yi (αi − αM+i) − ε

M∑
i=1

(αi + αM+i) (11.50)

subject to

M∑
i=1

(αi − αM+i) = 0, (11.51)

0 ≤ αi ≤ C for i = 1, . . . , M. (11.52)

The optimization problem for the L2 support vector regressor given by
(11.43) and (11.45) becomes as follows. Maximize

Q(α) = −1
2

M∑
i,j=1

(αi − αM+i) (αj − αM+j)
(

H(xi,xj) +
δij

C

)

+
M∑
i=1

yi (αi − αM+i) − ε

M∑
i=1

(αi + αM+i) (11.53)

subject to

M∑
i=1

(αi − αM+i) = 0, (11.54)

αi ≥ 0 for i = 1, . . . , M. (11.55)

SMO solves two-variable subproblems without using a QP solver. In this
section we solve subproblems with more than two variables by the steepest
ascent method.

Now we define a candidate set V as the index set of variables that are
candidates of support vectors and a working set W as the index set of variables
in V .

The rough flow of the training procedure of the support vector regressor
is as follows:

1. Add all the indexes that are associated with the training data to V .
2. Select indices from V randomly and set them to W . Selected indices are

removed from V .

11.5 Steepest Ascent Methods 275

3. Calculate corrections of the variables in the working set by the steepest
ascent method so that the objective function is maximized.

4. If a convergence condition is satisfied, finish training. Otherwise, if V is
empty, add new candidates that violate the KKT complementarity con-
ditions. Return to Step 2.

11.5.1 Subproblem Optimization

In this subsection we explain Step 3 in more detail.
Let αW be vectors whose elements are αi (i ∈ W). From (11.51), αs ∈ αW

is expressed as follows:

αs = −
M∑

i �=s,i=1

αi +
2M∑

i=M+1

αi if s ≤ M, (11.56)

αs =
M∑
i=1

αi −
2M∑

i �=s,i=M+1

αi if s > M. (11.57)

Substituting (11.56) or (11.57) into the objective function, we eliminate con-
straint (11.51) from the dual problem. Here W ′ is defined as the set in which
s is removed from W , namely W ′ = W − {s}.

Because the objective function is quadratic, the change of the objective
function, ∆Q(αW ′), for the change of variables, ∆αW ′ , is given by

∆Q(αW ′) =
∂Q(αW ′)

∂αW ′
∆αW ′ +

1
2
∆αT

W ′
∂2Q(αW ′)

∂α2
W ′

∆αW ′ . (11.58)

If ∂2Q(αW ′)/∂α2
W ′ is positive definite, we can calculate corrections by the

following formula so that ∆Q(αW ′) is maximized:

∆αW ′ = −
(

∂2Q(αW ′)
∂α2

W ′

)−1
∂Q(αW ′)

∂αW ′
. (11.59)

For the L1 support vector regressor, from (11.50), (11.56), and (11.57),
the element of ∂Q(αW ′)/∂αW ′ is

∂Q(αW ′)
∂αi

= pi {yi∗ − ys∗ − ε (pi + q)

−
M∑

j=1

(αj − αM+j) (Hij − Hsj)} for i, s ∈ {1, . . . , 2M}, (11.60)

where Hij = H(xi∗ ,xj∗) and i∗ (s∗), pi, and q are defined as

i∗ =
{

i for i ≤ M,
i − M for i > M,

(11.61)

276 11 Function Approximation

pi =
{

+1 for i ≤ M,
−1 for i > M,

(11.62)

q =
{−1 for s ≤ M,

+1 for s > M.
(11.63)

The element of ∂2Q(αW ′)/∂α2
W ′ is

∂2Q(αW ′)
∂αi∂αj

= −pi pj (Hij + Hss − His − Hjs)

for i, j, s ∈ {1, . . . , 2M}. (11.64)

For the L2 support vector regressor, the element of ∂Q(αW ′)/∂αW ′ is

∂Q(αW ′)
∂αi

= pi {yi∗ − ys∗ − ε (pi + q) −
M∑

j=1

(αj − αM+j) (Hij − Hsj)

− 1
C

(αi∗ − αM+i∗ − αs∗ + αM+s∗)} for i, s ∈ {1, . . . , 2M} (11.65)

and the element of ∂2Q(αW ′)/∂α2
W ′ is

∂2Q(αW ′)
∂αi∂αj

= −pi pj (Hij + Hss − His − Hjs) − 1
C

(δij + pi pj)

for i, j, s ∈ {1, . . . , 2M}. (11.66)

The solution given by (11.59) is obtained by solving a set of simultaneous
equations.

To speed up solving (11.59), we decompose ∂2Q(αW ′)/∂α2
W ′ into the up-

per and lower triangular matrices by the Cholesky factorization. If the Hessian
matrix is not positive definite, the Cholesky factorization stops because the
input of the square root becomes nonpositive. When this happens, we solve
(11.59) only for the variables that are decomposed so far. And we delete the
associated variable and the variables that are not decomposed from the work-
ing set. For the L2 support vector regressor, because the Hessian matrix is
positive definite, the procedure is not necessary.

Now we can calculate the correction of αs. In the case of s ≤ M ,

∆αs = −
∑

i∈W ′, i≤M

∆αi +
∑

i∈W ′, i>M

∆αi, (11.67)

or in the case of s > M ,

∆αs =
∑

i∈W ′, i≤M

∆αi −
∑

i∈W ′, i>M

∆αi. (11.68)

Now confine our consideration to the L1 support vector regressor. Al-
though the solution calculated by the described procedure satisfies (11.51),

11.5 Steepest Ascent Methods 277

it may not satisfy (11.52). Namely, when there are variables that cannot be
corrected,

∆αi < 0 when αi = 0,

∆αi > 0 when αi = C,

we remove these variables from the working set and again solve (11.59) for the
reduced working set. This does not require much time because recalculation
of the kernels for the reduced working set are not necessary by caching them.

Suppose the solution that can make some corrections for all the variables
in the working set are obtained. Then the corrections are adjusted so that
all the updated variables go into the range [0, C]. Let ∆α′

i be the allowable
corrections if each variable is corrected separately. Then

∆α′
i =

⎧⎨
⎩

C − αold
i if αold

i + ∆αi > C,
−αold

i if αold
i + ∆αi < 0,

∆αi otherwise.
(11.69)

Using ∆α′
i we calculate the minimum ratio of corrections:

r = min
i∈W

∆α′
i

∆αi
. (11.70)

Then the variables are updated by

αnew
i = αold

i + r∆αi. (11.71)

Clearly the updated variables satisfy (11.52).
For the L2 support vector regressor, we can calculate corrections without

considering the upper bound C for αi.

11.5.2 Convergence Check

After the update of the variables in the working set, we check whether training
should be finished. Namely, in Step 4, when V becomes empty, we check if
there are variables that violate the KKT complementarity conditions and
terminate training if there are no violating variables. But by this method the
training may be slow in some cases.

To accelerate training, if an increase of the objective function becomes very
small, we consider the solution sufficiently near the optimal solution. Thus we
finish training when the following inequality is satisfied for N consecutive
iterations:

Qn − Qn−1

Qn−1
< η, (11.72)

where η is a small positive parameter.

278 11 Function Approximation

11.6 Candidate Set Selection

If all the variables satisfy KKT complementarity conditions the optimal solu-
tion is obtained. Thus to speed up training we need to select violating variables
as members of the candidate set.

11.6.1 Inexact KKT Conditions

The KKT conditions for the L1 support vector regressor are as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αi = C, αM+i = 0 if yi − f(xi) > ε,
0 < αi < C, αM+i = 0 if yi − f(xi) = ε,
αi = 0, αM+i = 0 if |yi − f(xi)| ≤ ε,
αi = 0, 0 < αM+i < C if yi − f(xi) = −ε,
αi = 0, αM+i = C if yi − f(xi) < −ε.

(11.73)

And the KKT conditions for the L2 support vector regressor are as follows:⎧⎪⎪⎨
⎪⎪⎩

αi > 0, αM+i = 0 if yi − f(xi) = ε +
αi

C
,

αi = 0, αM+i = 0 if |yi − f(xi)| ≤ ε,

αi = 0, αM+i > 0 if yi − f(xi) = −ε − αM+i

C
.

(11.74)

In checking the KKT conditions, we need to calculate the value of f(xi).
But because the bias term b is not included in the dual problem, during
training the value is inexact.

For the L1 support vector regressor, variables αi have the upper and lower
bounds and for the L2 support vector regressor variables have the lower bound.
If αi is bounded, the possibility that the variable is modified in the next
iteration is small. Thus, we choose the unbounded variables with high priority.

11.6.2 Exact KKT Conditions

The KKT conditions discussed in the previous section are inexact in that b is
estimated during training. Keerthi et al. [131, 133] proposed exact KKT con-
ditions and showed by computer simulations that selecting the violating vari-
ables led to training speedup. In the following, we first discuss their method
for the L1 support vector regressor.

We define Fi by

Fi = yi −
M∑

j=1

(αj − αM+j)Hij , (11.75)

where Hij = H(xi,xj).
We can classify KKT conditions into the following five cases:

11.6 Candidate Set Selection 279

Case 1. 0 < αi < C

Fi − b = ε, (11.76)
Case 2. 0 < αM+i < C

Fi − b = −ε, (11.77)
Case 3. αi = αM+i = 0

−ε ≤ Fi − b ≤ ε, (11.78)
Case 4. αM+i = C

Fi − b ≤ −ε, (11.79)
Case 5. αi = C

Fi − b ≥ ε. (11.80)

Then we define F̃i, F̄i as follows:

F̃i =
{

Fi − ε if 0 < αi < C or αi = αM+i = 0,
Fi + ε if 0 < αM+i < C or αM+i = C,

(11.81)

F̄i =
{

Fi − ε if 0 < αi < C or αi = C,
Fi + ε if 0 < αM+i < C or αi = αM+i = 0.

(11.82)

Then the KKT conditions are simplified as follows:

F̄i ≥ b ≥ F̃i for i = 1, . . . , M. (11.83)

We must notice that according to the values of αi and αM+i, F̄i or F̃i is not
defined. For instance, if αi = C, F̃i is not defined.

To detect the violating variables, we define blow, bup as follows:

blow = max
i

F̃i,

bup = min
i

F̄i.
(11.84)

Then if the KKT conditions are not satisfied, bup < blow and the datum i that
satisfies

bup < F̃i − τ or blow > F̄i + τ for i ∈ {1, . . . , M} (11.85)

violates the KKT conditions, where τ is a positive parameter to loosen the
KKT conditions. By this, without calculating b, we can detect the variables
that violate the KKT conditions. As training proceeds, bup and blow approach
each other and at the optimal solution, bup and blow have the same value if
the solution is unique. If not, bup > blow.

For the L2 support vector regressor, we define F̃i and F̄i as follows:

F̃i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi − ε if αi = αM+i = 0,

Fi − ε − αi

C
if αi > 0, αM+i = 0,

Fi + ε +
αi

C
if αi = 0, αM+i > 0,

(11.86)

280 11 Function Approximation

F̄i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fi + ε if αi = αM+i = 0,

Fi − ε − αi

C
if αi > 0, αM+i = 0,

Fi + ε +
αM+i

C
if αi = 0, αM+i > 0.

(11.87)

The remaining procedure is the same as that of the L1 support vector regres-
sor.

For selection of variables for the working set, it may be desirable to select
the most violating variables. In the following, we discuss one such method.

11.6.3 Selection of Violating Variables

The degree of violation is larger as F̃i becomes larger and F̄i smaller. Thus
a procedure of candidate set selection for the steepest ascent training is as
follows:

1. Sort F̄i in increasing order and F̃k in decreasing order and set i = 1, k = 1.
2. Compare the value of F̃i with bup and if the KKT conditions are violated,

add i to the candidate set V and increment i by 1.
3. Compare the value of F̄k with blow and if the KKT conditions are violated,

add i to the candidate set V and increment k by 1.
4. Iterate Steps 2 and 3, so that the violating data for F̃i and F̄k are selected

alternately until there are no violating data for F̃i and F̄k.
5. Move indices in V to the set of working set W in decreasing order of

violation.

For the primal-dual interior-point method combined with the decomposi-
tion technique, if in Step 4 there are no violating data or the working set is
full, we stop selecting the variables, and Step 5 is not necessary.

In function approximation, for xi, there are two variables αi and αM+i. In
steepest ascent training, we select either variable according to the following
conditions. If one is zero and the other is nonzero, we select the nonzero
variable. If both are zero, we evaluate the error and if yi − f(xi) > 0, we
select αi, and otherwise, αM+i. To estimate f(xi), we use b = (bup + blow)/2.

11.7 Variants of Support Vector Regressors

Various variants of support vector regressors have been developed. For exam-
ple, to enhance approximation ability, mixtures of different kernels are used
[150, 221, 228]. To enhance interpolation and extrapolation abilities, Smits
and Jordaan [228] proposed mixing global kernels such as polynomials and
local kernels such as RBF kernels by ρHpoly +(1−ρ)HRBF , where 0 ≥ ρ ≥ 1.

Inspired by multiresolution signal analysis, such as wavelet analysis, Shao
and Cherkassky [221] proposed multiresolution support vector machines. In-
stead of using one kernel, two kernels with different resolutions are combined.

11.7 Variants of Support Vector Regressors 281

For multiresolution signal analysis with orthogonal basis functions, compo-
nents of different resolutions can be computed separately. But because the
kernels in support vector regressors are not orthogonal, the support vector
training is reformulated to determine the Lagrange multipliers for two types
of kernels simultaneously.

Jordaan and Smits [124] detected, as an outlier, the datum that frequently
becomes a bounded support vector whose average slack variable value is the
largest for several trained support vector regressors with different values of ε.

In the following, we discuss linear programming support vector regressors,
ν-support vector regressors, and least squares support vector regressors.

11.7.1 Linear Programming Support Vector Regressors

Similar to LP support vector machines, LP support vector regressors can
be defined. First, we define the approximation function in the dual form as
follows:

D(x) =
M∑
i=1

αi H(x,xi) + b, (11.88)

where αi take on real values. Then we consider minimizing

Q(α, b, ξ) =
M∑
i=1

(|αi| + C (ξi + ξ∗
i)) (11.89)

subject to

−ε − ξ∗
j ≤

M∑
i=1

αi H(xj ,xi) + b − yj ≤ ε + ξj for j = 1, . . . , M. (11.90)

Letting αi = α+
i −α−

i and b = b+ −b−, where α+
i , α−

i , b+, and b− are nonneg-
ative, we can solve (11.89) and (11.90) for α, b, and ξ by linear programming.
For large problems, we use decomposition techniques [38, 249].

Kecman, Arthanari, and Hadzic [128, 129] formulated the linear program-
ming support vector regressors differently. Namely, minimize

∑m
i=1 |wi| sub-

ject to |gT w − y| ≤ ε. When RBF kernels are used, elements of g are given
by exp(−γ ‖x − x′‖2), where x′ is a training datum. The advantage of this
formulation is that, unlike support vector regressors, we can place multiple
basis functions (i.e., basis functions with different values of γ) for each training
datum.

11.7.2 ν-Support Vector Regressors

Usually it is difficult to set the optimal value of ε. One approach to overcome
this problem is to estimate the value assuming that it is in proportion to the

282 11 Function Approximation

standard deviation of the noise [121, 231]. Another approach is to modify the
model so that it can be optimized during training [211].

Schölkopf et al. [211] proposed controlling the accuracy of the support
vector regressor introducing parameter ν as follows. Minimize

Q(w, b, ξ, ξ∗, ε) =
1
2
‖w‖2 + C

(
ν ε +

1
M

M∑
i=1

(ξi + ξ∗
i)

)
(11.91)

subject to the constraints

yi − wT g(xi) − b ≤ ε + ξi for i = 1 . . . , M,

wT g(xi) + b − yi ≤ ε + ξ∗
i for i = 1 . . . , M, (11.92)

ξi ≥ 0, ξ∗
i ≥ 0 for i = 1 . . . , M,

where ν is introduced to control the value of ε.
Introducing the Lagrange multipliers αi, α

∗
i , ηi, η∗

i , and β (≥ 0), we convert
the original constrained problem into an unconstrained one:

Q(w, b, β, ξ, ξ∗, ε, α,α∗,η,η∗)

=
1
2
‖w‖2 + C ν ε +

1
M

C
M∑
i=1

(ξi + ξ∗
i) −

M∑
i=1

αi (ε + ξi − yi + wT g(xi) + b)

−
M∑
i=1

α∗
i (ε + ξ∗

i + yi − wT g(xi) − b) − β ε −
M∑
i=1

(ηi ξi + η∗
i ξ∗

i). (11.93)

Setting the derivatives of (11.93) with respect to the primal variables to
zero, we obtain

w =
M∑
i=1

(αi − α∗
i)g(xi), (11.94)

C ν −
M∑
i=1

(αi + α∗
i) − β = 0, (11.95)

M∑
i=1

(αi − α∗
i) = 0, (11.96)

αi + ηi =
C

M
for i = 1 . . . , M, (11.97)

α∗
i + η∗

i =
C

M
for i = 1 . . . , M. (11.98)

Then the dual problem is obtained as follows. Maximize

Q(α, α∗) = −1
2

M∑
i,j=1

(αi − α∗
i) (αj − α∗

j) H(xi,xj)

11.7 Variants of Support Vector Regressors 283

+
M∑
i=1

yi (αi − α∗
i) (11.99)

subject to the constraints:

M∑
i=1

(αi − α∗
i) = 0, (11.100)

0 ≤ αi ≤ C

M
, 0 ≤ α∗

i ≤ C

M
for i = 1 . . . , M, (11.101)

M∑
i=1

(αi + α∗
i) ≤ C ν, (11.102)

where H(xi,xj) = gT (xi)g(xj).
From (11.101) and αi α∗

i = 0, the left-hand side of (11.102) is bounded by
C. Thus, the solution with ν > 1 is the same as that with ν = 1. Assume that
the obtained ε is not zero (ε > 0). Then the following relations hold:

Number of errors
M

≤ ν ≤ Number of support vectors
M

, (11.103)

where the number of errors is the number of data that are outside of the
ε-tube. This can be proved as follows. For the training data outside of the
tube, either αi = C/M or α∗

i = C/M . Thus from (11.101) and (11.102), the
training data outside of the tube is at most νM . Therefore, the first inequality
holds. From the KKT conditions, ε > 0 implies β = 0. Thus from (11.95), the
equality holds in (11.102). Therefore, from (11.101) and (11.102), the number
of support vectors is at least νM . Thus the second inequality holds.

11.7.3 Least Squares Support Vector Regressors

Similar to the discussions for least squares (LS) support vector machines for
pattern classification, Suykens [234] proposed least squares support vector
machines for function approximation, in which the inequality constraints in
the original support vector regressors are converted into equality constraints.

Using the M training data pairs (xi, yi) (i = 1, . . . , M), we consider de-
termining the following function:

y(x) = wT g(x) + b, (11.104)

where w is the l-dimensional vector, b is the bias term, and g(x) is the mapping
function that maps the m-dimensional vector x into the l-dimensional feature
space.

The LS support vector regressor is trained by minimizing

1
2
wT w +

C

2

M∑
i=1

ξ2
i (11.105)

284 11 Function Approximation

with respect to w and b subject to the equality constraints:

yi = wT g(xi) + b + ξi for i = 1, . . . , M, (11.106)

where ξi is the slack variable for xi and C is the margin parameter.
Introducing the Lagrange multipliers αi into (11.105) and (11.106), we

obtain the unconstrained objective function:

Q(w, b,α, ξ) =
1
2
wT w +

C

2

M∑
i=1

ξ2
i

−
M∑
i=1

αi

(
wT g(xi) + b + ξi − yi

)
, (11.107)

where α = (α1, . . . , αM)T and ξ = (ξ1, . . . , ξM)T .
Taking the partial derivatives of (11.107) with respect to w, b,α, and ξ,

respectively, and equating them to zero, we obtain the optimal conditions as
follows:

w =
M∑
i=1

αi g(xi), (11.108)

M∑
i=1

αi = 0, (11.109)

wT g(xi) + b + ξi − yi = 0, (11.110)
αi = C ξi for i = 1, . . . , M. (11.111)

Substituting (11.108) and (11.111) into (11.110) and expressing it and
(11.109) in matrix form, we obtain(

Ω 1
1T 0

)(
α
b

)
=
(

y
0

)
, (11.112)

where 1 is the M -dimensional vector and

{Ωij} = gT (xi)g(xj) +
δij

C
, (11.113)

δij =
{

1 i = j,
0 i �= j, (11.114)

y = (y1, . . . , yM), (11.115)
1 = (1, . . . , 1)T . (11.116)

Like the support vector machine, selecting H(x,x′) = gT (x)g(x′) that sat-
isfies Mercer’s condition, we can avoid the explicit treatment of the feature
space. The resulting approximation function becomes

11.8 Performance Evaluation 285

y(x) =
M∑
i=1

αi H(x,xi) + b. (11.117)

The original minimization problem is solved by solving the set of simulta-
neous linear equations (11.112) for α and b. Because the last diagonal element
of the coefficient matrix in (11.112) is zero, the matrix is positive semidefinite.

By changing the inequality constraints into equality constraints, training
of support vector machines reduces to solving a set of linear equations instead
of a quadratic programming problem. But by this formulation, sparsity of α is
not guaranteed. To avoid this, Suykens [234, 235] proposed pruning the data
whose associated αi have small absolute values. Namely, first we solve (11.112)
using all the training data. Then we sort αi according to their absolute values
and delete a portion of the training data set (say 5 percent of the set) starting
from the data with the minimum absolute value in order. Then we solve
(11.112) using the reduced training data set and iterate this procedure while
the user-defined performance index is not degraded.

11.8 Performance Evaluation

11.8.1 Evaluation Conditions

We evaluated the performance of L1 and L2 support vector regressors (SVRs)
using the noisy data for a water purification plant and the noiseless Mackey-
Glass data listed in Table 1.1. For the Mackey-Glass data, we measured the
performance by NRMSE. If stated otherwise, we used ε = 0.01 and C =
10,000. In addition to the training data, we artificially generated the outliers
and evaluated the robustness of the estimation.

For the water purification plant data, because the number of nonstationary
data is too small, we used only the stationary data for most of the evaluation.
We evaluated the performance by the average and the maximum estimation
errors for the training and test data. We used ε = 1 and C = 1000 if stated
otherwise.

We used linear kernels, polynomial kernels with d = 3, and RBF kernels
with γ = 10.

We set η = 10−10 in (11.72) and if (11.72) is satisfied for consecutive 10
times, we stopped training. We used an AthlonMP2000+ personal computer
under Linux.

We evaluated:

• the effect of the working set size on training time using the steepest ascent
method (SAM),

• performance difference of L1 SVRs and L2 SVRs,
• convergence difference by inexact and exact KKT conditions,
• performance difference among several estimation methods, and
• robustness of SVRs to outliers.

286 11 Function Approximation

11.8.2 Effect of Working Set Size on Speedup

We evaluated how an increase of the working set size accelerates training by
the steepest ascent method. In the following we show the results using the
L1 SVR when the inexact KKT conditions were used for selecting violating
variables. The tendency was the same when the L2 SVR or the exact KKT
conditions were used.

Table 11.1 shows the results of the water purification data with polynomial
kernels. In the table, “Size,” “SVs, ” and “Time” denote the working set size,
the number of support vectors, and the training time. From the table, the
training time was shortened by increasing the working set size, and the 50
times speedup against the working set size of 2 was obtained for the working
set size of 50.

Table 11.1. Effect of working set size for the water purification data with polyno-
mial kernels

Size Time Training data Test data SVs

Ave.err Max.err Ave.err Max.err

(s) (mg/l) (mg/l) (mg/l) (mg/l)

2 151 0.73 4.30 1.03 11.55 98

3 112 0.73 4.31 1.03 11.56 97

5 59 0.73 4.27 1.03 11.51 97

10 22 0.73 4.34 1.03 11.57 98

20 7.3 0.73 4.37 1.03 11.59 98

30 3.8 0.73 4.33 1.03 11.55 98

40 3.4 0.73 4.44 1.03 11.65 95

50 3.0 0.73 4.31 1.03 11.53 96

Table 11.2 shows the training speedup for the Mackey-Glass data with
RBF kernels when the working set size was increased from 2 to 50. By in-
creasing the working set size, training was sped up and 8.3 times speedup
against the working set size of 2 was obtained for the working set size of 30.
When the size was larger than 30, training slowed down. This is because the
calculation of the inverse matrix becomes longer as the size increases. Thus
there is an optimal size for training speedup.

11.8.3 Comparison of L1 and L2 Support Vector Regressors

Here, we compare performance of L1 SVRs and L2 SVRs using the Mackey-
Glass data. Because the fitting capabilities of L1 SVRs and L2 SVRs are

11.8 Performance Evaluation 287

Table 11.2. Effect of working set size for the Mackey-Glass data with RBF kernels

Size Time Training data Test data SVs

(s) (NRMSE) (NRMSE)

2 58 0.028 0.027 55

3 48 0.028 0.027 57

5 29 0.028 0.027 52

10 16 0.028 0.027 52

20 8.8 0.028 0.027 54

30 7.0 0.028 0.027 52

40 7.7 0.028 0.027 50

50 8.7 0.029 0.028 49

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Size

L1-SVR (C = 10)

L2-SVR (C = 100000)

Fig. 11.4. Training time comparison of L1 SAM and L2 SAM for the Mackey-Glass
data with RBF kernels. From [112, p. 2069]

different for the same value of C, we set the values of C so that the L1 SVR
and the L2 SVR showed the similar NRMSEs for the training data.

Figure 11.4 shows the training time of the L1 SAM and L2 SAM when
the working set size was changed. We set C = 10 for the L1 SAM and C =
100,000 for the L2 SAM. When the size is small, the L2 SAM is faster. But
for sizes between 20 and 40, where training was the fastest, the difference is
small. The reasons may be as follows: Because of RBF kernels the variables
did not reach the upper bounds for the L1 SAM and the Hessian matrix for

288 11 Function Approximation

the L1 SVR with RBF kernels was positive definite. Thus, the advantages of
the L2 SVR did not appear.

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Size

L1-SAM (C=1000)

L2-SAM (C=100000)

Fig. 11.5. Training time comparison of L1 and L2 SVRs for the Mackey-Glass data
with polynomial kernels. From [112, p. 2070]

Figure 11.5 shows the training time comparison of the L1 SAM (C = 1000)
and the L2 SAM (C = 100,000) when the working set size was changed. For all
the sizes, training by the L2 SAM is faster. For sizes larger than 10, training
by the L1 SAM was slowed but that by the L2 SAM was sped up.

Table 11.3 shows the training time of the L1 SAM (C = 1000) and the
L2 SAM (C = 10) with linear kernels. The numeral in parentheses shows the
working set size. For sizes 5 and 30, training by the L2 SAM is faster. Training
by L1 SAM with size 30 is slower than with size 5. This is because for linear
kernels the number of independent variables is the number of input variables
plus 1. For the Mackey-Glass data, there are four input variables. Thus, if we
set the working set size of more than five, unnecessary calculations increase.
But for the L2 SAM, because the Hessian matrix is always positive definite,
this sort of thing did not happen.

11.8.4 Comparison of Exact and Inexact KKT Conditions

In selecting violating variables we use either the inexact or exact KKT con-
ditions. Here, we compare training time of the SAM by these conditions. We
set τ = 0.001 for the exact KKT conditions and used RBF kernels.

Figure 11.6 shows the training time comparison by the L1 SAM for the
water purification data. In general, training by the exact KKT conditions is
faster.

11.8 Performance Evaluation 289

Table 11.3. Training time comparison of L1 SAM and L2 SAM with linear kernels

Method Time Training data Test data SVs

(s) (NRMSE) (NRMSE)

L1 SAM (5) 7.4 0.46 0.46 446

L1 SAM (30) 16.9 0.46 0.46 446

L2 SAM (5) 1.0 0.43 0.43 475

L2 SAM (30) 0.8 0.43 0.43 475

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Size

Inexact KKT

Exact KKT

Fig. 11.6. Training time comparison by the L1 SAM for the water purification data

Figure 11.7 shows the training time comparison by the L2 SAM for the
water purification data. In general, training by the inexact KKT conditions is
faster, but the difference is small. But for sizes 2 and 4, training by the exact
KKT conditions is faster.

Figure 11.8 shows training time comparison by the L1 SAM for the
Mackey-Glass data. With sizes 2 to 10, training by the exact KKT conditions
is faster, but with sizes larger than or equal to 30, training by the inexact
KKT conditions is faster.

Figure 11.9 shows training time comparison of the L2 SAM for the Mackey-
Glass data. Except for the sizes 2 and 20, training by the inexact KKT con-
ditions is faster.

Using the inexact KKT conditions for the Mackey-Glass data, as the work-
ing set size became larger, longer training was needed. For the exact KKT
conditions, at the initial stage of training, most of the data are detected as
violating data. Thus for the Mackey-Glass data, in which the ratio of support

290 11 Function Approximation

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Size

Inexact KKT

Exact KKT

Fig. 11.7. Training time comparison by the L2 SAM for water purification data

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Size

Inexct KKT

Exact KKT

Fig. 11.8. Training time comparison of the L1 SAM for the Mackey-Glass data.
From [112, p. 2070]

vectors for the training data is low, redundant calculation was increased. Thus
training was considered slower than by the inexact KKT conditions.

11.8.5 Comparison with Other Training Methods

Using polynomial and RBF kernels, we compared training times of the SMA
and the primal-dual interior-point method (PDIP) [254] with and without
chunking.

11.8 Performance Evaluation 291

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Size

Inexact KKT

Exact KKT

Fig. 11.9. Training time comparison of the L2 SAM for the Mackey-Glass data.
From [112, p. 2070]

In the following tables a numeral in parentheses show the working set size.
In chunking, we changed the number of added data from 10 to 100 with the
increment of 10 and listed the fastest result.

The value of C for the L2 SVR was set so that the estimation performance
was comparable to that of the L1 SVR. For the water purification data, be-
cause there was not much difference, we set C = 1000.

Table 11.4 lists the training time comparison for the Mackey Glass data.
For polynomial kernels, training by SMA is faster than by PDIP with and
without chunking. But for RBF kernels, PDIP with chunking is the fastest.
This is because the number of support vectors is small and the size of the
problem of each iteration was very small.

Table 11.5 shows training time comparison for the water purification data
with linear kernels. Training by L2 SAM (30) was the fastest, and the PDIP
with chunking was the second-fastest.

According to the results, when the number of support vectors is small, the
primal-dual interior-point method with chunking was the fastest, but for the
data with many support vectors, L2 SAM was the fastest.

11.8.6 Performance Comparison with Other Approximation
Methods

Stationary Data

Table 11.6 shows the best estimation performance for different methods.
Namely, the three-layer neural network (NN), the fuzzy function approxi-
mator with inhibition (FAMI), the fuzzy function approximator with center-
of-gravity defuzzification (FACG), and the fuzzy function approximator with

292 11 Function Approximation

Table 11.4. Training time comparison for the Mackey-Glass data

Kernel Size Time Training data Test data SVs

(s) (NRMSE) (NRMSE)

L1 SAM (10) 11.9 0.067 0.066 277

Poly L2 SAM (30) 2.7 0.067 0.066 282

PDIP (—) 84.0 0.067 0.066 283

PDIP (70) 50.6 0.067 0.066 269

L1 SAM (30) 7.0 0.028 0.027 48

RBF L2 SAM (20) 6.6 0.028 0.027 55

PDIP (—) 79.9 0.028 0.027 54

PDIP (50) 0.9 0.028 0.027 54

Table 11.5. Training comparison for the water purification data with linear kernels

Size Time Training data Test data SVs

Ave.err Max.err Ave.err Max.err

(s) (mg/l) (mg/l) (mg/l) (mg/l)

L1 SAM (10) 2.5 1.14 18.36 1.18 5.77 113

L2 SAM (30) 0.7 1.26 14.43 1.26 7.64 124

PDIP (—) 10.8 1.13 18.60 1.16 5.96 115

PDIP (30) 2.6 1.13 18.60 1.16 5.96 115

a linear combination output (FALC) [3]. The support vector regressor showed
the minimum estimation errors for the training data and the second minimum
average estimation error for the test data following the neural network. But
the maximum estimation error for the test data was the maximum.

With noisy data, usually overfitting to the training data causes low gener-
alization ability. But for the support vector regressor, although the estimation
error for the training data is very small, the estimation error for the test data
is comparable to those of the other methods.

Nonstationary Data

Because the nonstationary training data included only 45 data and they
were noisy, overfitting occurred easily for conventional methods. We evalu-
ated whether this is the case for the support vector regressor.

11.8 Performance Evaluation 293

Table 11.6. Performance comparison for the stationary data

Method Training data Test data

Ave.err Max.err Ave.err Max.err

(mg/l) (mg/l) (mg/l) (mg/l)

L1 SVR 0.69 1.04 1.03 6.99

NN 0.84 4.75 0.99 6.95

FAMI 1.07 4.75 1.18 5.57

FACG 0.91 5.06 1.05 5.33

FALC 1.09 4.34 1.16 5.22

The best estimation performance was achieved for the polynomial kernel
with C = 10, d = 4, and ε = 0.5. Table 11.7 lists the best estimation per-
formance for different methods. The average estimation error for the training
data by the support vector regressor was the smallest, but the maximum es-
timation error was the largest. The average estimation error of the test data
by the support vector regressor was the second smallest following FAMI but
the maximum estimation error was the largest.

Table 11.7. Performance comparison for the nonstationary data

Method Training data Test data

Ave.err Max.err Ave.err Max.err

(mg/l) (mg/l) (mg/l) (mg/l)

L1 SVR 0.95 9.95 1.62 7.39

NN 1.59 6.83 1.74 6.78

FAMI 1.56 7.20 1.46 4.97

FACG 1.91 6.30 1.95 7.18

FALC 1.63 5.79 1.92 6.30

Mackey-Glass Data

The best estimation performance was obtained when RBF kernels with γ = 10
and ε = 0.001 were used.

Table 11.8 lists the best estimation results for different methods. In the
table, the support vector regressor showed the smallest NRMSE.

294 11 Function Approximation

Table 11.8. Performance comparison for the Mackey-Glass data

Approximator Test data

(NRMSE)

L1 SVR 0.003

NN [70] 0.02

ANFIS [119] 0.007

Cluster estimation-based [61] 0.014

FAMI [3] 0.092

FACG [3] 0.005

FALC [3] 0.006

11.8.7 Robustness for Outliers

The support vector regressor has a mechanism to suppress outliers. To evalu-
ate this, we randomly selected five data in the Mackey-Glass time series data
and multiplied them by 2. Therefore, the five input-output pairs that are gen-
erated from the time series data included outliers. Namely, 25 outliers were
included in the training data. We used the RBF kernels with γ = 10 and
ε = 0.005 that showed best performance without outliers. We evaluated the
performance changing C. The larger the magnitude of C, the larger the effect
of outliers to the estimation.

Table 11.9 shows the estimation performance when outliers were included.
The numerals in the parentheses are the NRMSEs excluding the outliers.
Table 11.10 shows the estimation performance when outliers were not in-
cluded. When the outliers were included, the best estimation was achieved for
C = 10. The NRMSE for the test data decreased as the value of C changed
from 100,000 to 10. This means that the effect of outliers was effectively sup-
pressed. But when the value of C was further decreased to 0.1, the NRMSE
increased. In this case the number of support vectors increased. Thus too
small a value of C excluded not only outliers but also normal data. Therefore,
to effectively eliminate outliers, we need to set a proper value to C.

The NRMSE for the training data is large when the outliers were included
to calculate the NRMSE, but when they were excluded, the NRMSEs were
almost the same as those without outliers. For example, for C = 10, the
difference was only 0.002. Thus the support vector regressor can be trained
irrespective of inclusion of outliers.

11.8 Performance Evaluation 295

Table 11.9. Performance of the Mackey-Glass data with outliers

C Training data Test data SVs Time

(NRMSE) (NRMSE) (s)

100,000 0.335 (0.019) 0.033 244 34822

10,000 0.342 (0.019) 0.023 182 6348

1000 0.345 (0.018) 0.019 146 2174

100 0.346 (0.017) 0.018 117 700

10 0.348 (0.017) 0.017 95 414

1 0.349 (0.018) 0.018 114 251

0.1 0.363 (0.031) 0.030 181 129

Table 11.10. Performance of the Mackey-Glass data without outliers

C Training data Test data SVs Time

(NRMSE) (NRMSE) (s)

100,000 0.014 0.014 80 414

10,000 0.014 0.014 80 393

1000 0.014 0.014 80 375

100 0.014 0.014 80 381

10 0.015 0.014 82 381

1 0.017 0.016 101 270

0.1 0.026 0.026 188 155

11.8.8 Summary

In this section, we evaluated support vector regressors (SVRs) for Mackey-
Glass and water purification data. The results are summarized as follows:

1. Training by the steepest ascent method (SMA), which optimizes plural
data at a time, was sped up by increasing the working set size from 2.
There was an optimal working set size. Namely, if a working set size is
too large, the training is slowed down.

2. The difference between the L1 SAM and the L2 SAM was small for kernels
with a high-dimensional feature space such as RBF kernels. But for kernels
with a low-dimensional feature space such as linear kernels, training by
L2 SAM was much faster. In such a situation, the advantages of positive

296 11 Function Approximation

definiteness of the Hessian matrix and the nonupper-bounded variables
became evident.

3. The exact KKT conditions did not always lead to faster convergence than
the inexact KKT conditions. For the water purification data and for the
Mackey-Glass data with a small working set size, the exact KKT condi-
tions performed better for the L1 SAM. But for the Mackey-Glass data, as
we increased the working set size, the inexact KKT conditions performed
better. This is because, in the initial stage of training, exact KKT condi-
tions detect almost all variables as violating variables, and this leads to
useless calculations.

4. For problems with a small number of support vectors, training by the
primal-dual interior-point method with chunking was faster than that by
the SAM. But for problems with a relatively large number of support
vectors, the SAM was faster.

5. There was not much difference in performance among different approxi-
mation methods.

6. By proper selection of the value of C, SVRs could suppress the effect of
outliers.

A

Conventional Classifiers

A.1 Bayesian Classifiers

Bayesian classifiers are based on probability theory and give the theoretical
basis for pattern classification.

Let ω be a random variable and take one of n states: ω1, . . . , ωn, where
ωi indicates class i, and an m-dimensional feature vector x be a random
variable vector. We assume that we know the a priori probabilities P (ωi)
and conditional densities p(x |ωi). Then when x is observed, the a posteriori
probability of ωi, P (ωi |x), is calculated by the Bayes’ rule:

P (ωi |x) =
p(x |ωi) P (ωi)

p(x)
, (A.1)

where

p(x) =
n∑

i = 1

p(x |ωi) P (ωi). (A.2)

Assume that the cost cij is given when x is classified into class i although
it is class j. Then the expected conditional cost in classifying x into class i,
C(ωi |x), is given by

C(ωi |x) =
n∑

j = 1

cij P (ωj |x). (A.3)

The conditional cost is minimized when x is classified into the class

arg min
i = 1,...,n

C(ωi |x). (A.4)

This is called Bayes’ decision rule.
In diagnosis problems, usually there are normal and abnormal classes.

Misclassification of normal data into the abnormal class is less favorable than

298 A Conventional Classifiers

misclassification of abnormal data into the normal class. In such a situation,
we set a smaller cost to the former than the latter.

If we want to minimize the average probability of misclassification, we set
the cost as follows:

cij =
{

0 for i = j,
1 for i �= j,

i, j = 1, . . . , n. (A.5)

Then, from (A.1) and (A.2) the conditional cost given by (A.3) becomes

C(ωi |x) =
n∑

j �= i,
j = 1

P (ωj |x)

= 1 − P (ωi |x). (A.6)

Therefore, the Bayes decision rule given by (A.4) becomes

arg max
i = 1,...,n

P (ωi |x)

= arg max
i = 1,...,n

p(x |ωi) P (ωi). (A.7)

Now, we assume that the conditional densities p(x |ωi) are normal:

p(x |ωi) =
1√

(2π)n det(Qi)
exp

(
− (x − ci)T Q−1

i (x − ci)
2

)
, (A.8)

where ci is the mean vector and Qi is the covariance matrix of the normal
distribution for class i. If the a priori probabilities P (ωi) are the same for
i = 1, . . . , n, x is classified into class i with the maximum p(x |ωi).

A.2 Nearest Neighbor Classifiers

Nearest neighbor classifiers use all the training data as templates for classi-
fication. In the simplest form, for a given input vector, the nearest neighbor
classifier searches the nearest template and classifies the input vector into the
class to which the template belongs. In the complex form the classifier treats
k nearest neighbors. For a given input vector, the k nearest templates are
searched and the input vector is classified into the class with the maximum
number of templates. The classifier architecture is simple, but as the number
of training data becomes larger, the classification time becomes longer. There-
fore many methods for speeding up classification are studied [33, pp. 181–91],
[202, pp. 191–201]. One uses the branch-and-bound method [90, pp. 360–2]
and another edits the training data, i.e., selects or replaces the data with the
suitable templates. It is proved theoretically that as the number of templates
becomes larger, the expected error rate of the nearest neighbor classifier is
bounded by twice that of the Bayesian classifier [97, pp. 159–75].

A.2 Nearest Neighbor Classifiers 299

Usually the Euclidean distance is used to measure the distance between
two data x and y:

d(x,y) =

√√√√ m∑
i = 1

(xi − yi)2, (A.9)

but other distances, such as the Manhattan distance

d(x,y) =
m∑

i = 1

|xi − yi| (A.10)

are used. It is clear from the architecture that the recognition rate of the
training data for the one-nearest neighbor classifier is 100 percent. But for the
k-nearest neighbor classifier with k > 1, the recognition rate of the training
data is not always 100 percent.

Because the distances such as the Euclidean and Manhattan distances
are not invariant in scaling, classification performance varies according to the
scaling of input ranges.

B

Matrices

B.1 Matrix Properties

In this section, we summarize the matrix properties used in this book. For
more detailed explanation, see, e.g., [96].

Vectors x1, . . . ,xn are linearly independent if

a1 x1 + · · · + an xn = 0 (B.1)

holds only when a1 = · · · = am = 0. Otherwise, namely, at least one ai is
nonzero, x1, . . . ,xn are linearly dependent.

Let A be an m × m matrix:

A =

⎛
⎝ a11 · · · a1m

.
am1 · · · amm

⎞
⎠ . (B.2)

Then the transpose of A, denoted by AT , is

AT =

⎛
⎝ a11 · · · am1

.
a1m · · · amm

⎞
⎠ . (B.3)

If A satisfies A = AT , A is a symmetric matrix. If A satisfies AT A = A AT = I,
A is an orthogonal matrix, where I is the m × m unit matrix:

I =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
.
0 0 · · · 1

⎞
⎟⎟⎠ . (B.4)

If m × m matrices A and B satisfy A B = I, B is called the inverse of A
and is denoted by A−1. If A has the inverse, A is regular (or nonsingular).
Otherwise, A is singular.

302 B Matrices

Lemma B.1. Let matrices A, B, C, and D be n×n, n×m, m×n, and m×m
matrices, respectively and A, D, and D + CA−1B be nonsingular. Then the
following relation holds:(

A + BD−1C
)−1

= A−1 − A−1B
(
D + CA−1B

)−1
CA−1. (B.5)

This is called the matrix inversion lemma.
Let m = 1, B = b, C = cT , and D = 1. Then (B.5) reduces to

(
A + bcT

)−1
= A−1 − A−1bcT A−1

1 + cT A−1b
. (B.6)

Using (B.6), LOO error rate estimation of linear equation based–machines
such as LS support vector machines can be sped up [42, 55, 209, 278].

The determinant of an m × m matrix A = {aij}, det(A), is defined recur-
sively by

det(A) =
m∑

i = 1

(−1)i+1 a1i det(A1i), (B.7)

where A1i is the (m − 1) × (m − 1) matrix obtained by deleting the first row
and the ith column from A. When m = 1, det(A) = a11.

If, for the m × m matrix A, a nonzero m-dimensional vector x exists for a
constant λ:

Ax = λx, (B.8)

λ is called an eigenvalue and x an eigenvector. Rearranging (B.8) gives

(A − λ I)x = 0. (B.9)

Thus, (B.9) has nonzero x, when

det(A − λ I) = 0, (B.10)

which is called the characteristic equation.

Theorem B.2. All the eigenvalues of a real symmetric matrix are real.

Theorem B.3. Eigenvectors associated with different eigenvalues for a real
symmetric matrix are orthogonal.

For an m-dimensional vector x and an m × m symmetric matrix A, Q =
xT Ax is called the quadratic form. If for any nonzero x, Q = xT Ax ≥ 0,
Q is positive semidefinite. Matrix Q is positive definite if the strict inequality
holds. Let L be an m × m orthogonal matrix. By y = Lx, x is transformed
into y. This is the transformation from one orthonormal base into another
orthonormal basis. The quadratic form Q is

Q = xT Ax

= yT L A LT y. (B.11)

B.2 Least Squares Methods and Singular Value Decomposition 303

Theorem B.4. The characteristic equations for A and L A LT are the same.

Theorem B.5. If an m × m real symmetric matrix A is diagonalized by L:

L A LT =

⎛
⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
.
0 0 · · · λm

⎞
⎟⎟⎠ , (B.12)

λ1, . . . , λm are the eigenvalues of A and the ith row of L is the eigenvector
associated with λi.

If all the eigenvalues of A are positive, A is positive definite. If all the
eigenvalues are nonnegative, A is positive semidefinite.

B.2 Least Squares Methods and Singular Value
Decomposition

Assume that we have M input-output pairs {(a′
1, b1), . . . , (a′

M , bM)} in the
(n − 1)-dimensional input space x′ and one-dimensional output space y. Now
using the least squares method, we determine the linear relation of the input-
output pairs:

y = pT x′ + q, (B.13)

where p is the (n − 1)-dimensional vector, q is a scalar constant, and M ≥ n.
Rewriting (B.13), we get

(x′T , 1)
(

p
q

)
= y. (B.14)

Substituting a′
i and bi into x′ and y in (B.14), respectively, and replacing

(pT , q)T with the n-dimensional parameter vector x, we obtain

aT
i x = bi for i = 1, . . . , M, (B.15)

where ai = (a′
i
T
, 1)T .

We determine the parameter vector x so that the sum-of-squares error:

E = (Ax − b)T (Ax − b) (B.16)

is minimized, where A is an M ×n matrix and b is an M -dimensional vector:

A =

⎛
⎜⎜⎜⎝

aT
1

aT
2
...

aT
M

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

b1
b2
...

bM

⎞
⎟⎟⎟⎠ . (B.17)

304 B Matrices

Here, if the rank of A is smaller than n, there is no unique solution. In that
situation, we determine x so that the Euclidean norm of x is minimized.

Matrix A is decomposed into singular values [96]:

A = US V T , (B.18)

where U and V are M × M and n × n orthogonal matrices, respectively, and
S is an M × n diagonal matrix given by

S =

⎛
⎜⎜⎜⎝

σ1 0
. . .

0 σn

0M−n,n

⎞
⎟⎟⎟⎠ . (B.19)

Here, σi are singular values and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and 0M−n,n is the
(M − n) × n zero matrix.

It is known that the columns of U and V are the eigenvectors of A AT

and AT A, respectively, and that the singular values correspond to the square
roots of the eigenvalues of A AT , which are the same as those of AT A [60,
pp. 434–5]. Thus when A is a symmetric square matrix, U = V and A =
U S UT . This is similar to the diagonalization of the square matrix given by
Theorem B.5. The difference is that the singular values A are the absolute
values of the eigenvalues of A. Thus, if A is a positive (semi)definite matrix,
both decompositions are the same.

Rewriting (B.16), we get [96, p. 256]

E = (Ax − b)T (Ax − b)
= (U S V T x − U UT b)T (Ax − b)
= (S V T x − UT b)T (S V T x − UT b)

=
n∑

i = 1

(σi vT
i x − uT

i b)2 +
M∑

i = n+1

(uT
i b)2, (B.20)

where U = (u1, . . . ,uM) and V = (v1, . . . ,vn). Assuming that the rank of A
is r (≤ n), (B.20) is minimized when

σi vT
i x = uT

i b for i = 1, . . . , r, (B.21)
vT

i x = 0 for i = r + 1, . . . , n. (B.22)

Equation (B.22) is imposed to obtain the minimum Euclidean norm solu-
tion. From (B.21) and (B.22), we obtain

x = V S+UT b = A+ b, (B.23)

where S+ is the n × M diagonal matrix given by

B.3 Covariance Matrices 305

S+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
σ1

0

. . . 0
1
σr

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B.24)

We call A+ the pseudo-inverse of A. We must bear in mind that in cal-
culating the pseudo-inverse, we replace the reciprocal of 0 with 0, not with
infinity. This ensures the minimum norm solution.

From (B.18) and (B.23),

A+A = V S+UT U S V T

= V S+ S V T

= V

(
Ir 0r,n−r

0n−r,r 0n−r

)
V T

=
(

Ir 0r,n−r

0n−r,r 0n−r

)
, (B.25)

A A+ = U S S+ UT

=
(

Ir 0r,M−r

0M−r,r 0M−r

)
, (B.26)

where Ir is the r×r unit matrix, 0i is the i× i zero matrix, and 0i,j is the i×j
zero matrix. Therefore, if A is a square matrix with rank n, A+ A = A A+ = I.
Namely, the pseudo-inverse of A coincides with the inverse of A, A−1. If M > n
and the rank of A is n, A+ A = I but A A+ �= I. In this case A+ is given by

A+ = (AT A)−1 AT . (B.27)

This is obtained by taking the derivative of (B.16) with respect to x and
equating the result to zero.

When M > n and the rank of A is smaller than n, A+ A �= I and A A+ �= I.
Even when AT A is nonsingular, it is recommended to calculate the pseudo-

inverse by singular value decomposition, not using (B.27). Because if AT A is
near singular, (AT A)−1 AT is vulnerable to the small singular values [195, pp.
59–70].

B.3 Covariance Matrices

Let x1, . . . ,xM be M samples of the m-dimensional random variable X. Then
the sample covariance matrix of X is given by

Q =
1
M

M∑
i = 1

(xi − c) (xi − c)T , (B.28)

306 B Matrices

where c is the mean vector:

c =
1
M

M∑
i = 1

xi. (B.29)

To get the unbiased estimate of the covariance matrix, we replace M with
M − 1 in (B.28), but in this book we use (B.28) as the sample covariance
matrix.

Let
yi = xi − c. (B.30)

Then (B.28) becomes

Q =
1
M

M∑
i = 1

yi yT
i . (B.31)

From (B.29) and (B.30), y1, . . . ,yM are linearly dependent.
According to the definition, the covariance matrix Q is symmetric. Matrix

Q is positive (semi)definite, as the following theorem shows.

Theorem B.6. The covariance matrix Q given by (B.31) is positive definite
if y1, . . . ,yM have at least m linearly independent data. Matrix Q is positive
semidefinite, if any m data from y1, . . . ,yM are linearly dependent.

Proof. Let z be an m-dimensional nonzero vector. From (B.31),

zT Q z = zT

(
1
M

M∑
i = 1

yi yT
i

)
z

=
1
M

M∑
i = 1

(
zT yi

) (
zT yi

)T

=
1
M

M∑
i = 1

(
zT yi

)2 ≥ 0. (B.32)

Thus Q is positive semidefinite. If there are m linearly independent data in
{y1, . . . ,yM}, they span the m-dimensional space. Because any z is expressed
by a linear combination of these data, the strict inequality holds for (B.32).

Because y1, . . . ,yM are linearly dependent, at least m + 1 samples are
necessary so that Q becomes positive definite. �

Assuming that Q is positive definite, the following theorem holds.

Theorem B.7. If Q is positive definite, the mean square weighted distance
for {y1, . . . ,yM} is m:

1
M

M∑
i = 1

yT
i Q−1 yi = m. (B.33)

B.3 Covariance Matrices 307

Proof. Let P be the orthogonal matrix that diagonalizes Q. Namely,

P Q PT = diag(λ1, . . . , λm), (B.34)

where diag denotes the diagonal matrix, and λ1, . . . , λm are the eigenvalues
of Q. From (B.34),

Q = PT diag(λ1, . . . , λm)P, (B.35)
Q−1 = PT diag(λ−1

1 , . . . , λ−1
m)P. (B.36)

Let
ỹi = P yi. (B.37)

Then from (B.31) and (B.37), (B.34) becomes

1
M

M∑
i = 1

ỹi ỹT
i = diag(λ1, . . . , λm). (B.38)

Thus for the diagonal elements of (B.38),

1
M

M∑
i = 1

ỹ2
ik = λk for k = 1, . . . , m, (B.39)

where ỹik is the kth element of ỹi. From (B.36) and (B.37), the left-hand side
of (B.33) becomes

1
M

M∑
i = 1

yT
i Q−1 yi =

1
M

M∑
i = 1

ỹT
i diag(λ−1

1 , . . . , λ−1
m) ỹi

=
1
M

M∑
i = 1

m∑
k = 1

λ−1
k ỹ2

ik. (B.40)

Thus from (B.39) and (B.40), the theorem holds. �

C

Quadratic Programming

Quadratic programming is the basis of support vector machines. Here we
summarize some of the basic properties of quadratic programming.

C.1 Optimality Conditions

Consider the following optimization problem. Minimize

f(x) =
1
2
xT Qx + cT x (C.1)

subject to

gi(x) = aT
i x + bi ≥ 0 for i = 1, . . . , k, (C.2)

hi(x) = dT
i x + ei = 0 for i = 1, . . . , o, (C.3)

where x, ai, and di are m-dimensional vectors; Q is an m × m positive
semidefinite matrix; and bi and ei are scalar constants. This problem is called
the quadratic programming problem. Because of the linear equality and in-
equality constraints, x is in a closed convex domain.

We introduce the Lagrange multipliers:

L(x,α,β) = f(x) −
k∑

i=1

αi gi(x) +
o∑

i=1

βi hi(x), (C.4)

where α = (α1, . . . , αk)T , αi ≥ 0 for i = 1, . . . , k, and β = (β1, . . . , βo)T .
Then the following theorem holds.

Theorem C.1. The optimal solution (x∗,α∗,β∗) exists if and only if the
following conditions are satisfied:

310 C Quadratic Programming

∂L(x∗,α∗,β∗)
∂x

= 0, (C.5)

α∗
i gi(x∗) = 0 for i = 1, . . . , k, (C.6)

α∗
i ≥ 0 for i = 1, . . . , k, (C.7)

hi(x∗) = 0 for i = 1, . . . , o. (C.8)

These conditions are called the Karush-Kuhn-Tucker (KKT) conditions and
the conditions given by (C.6) are called the Karush-Kuhn-Tucker complemen-
tarity conditions. If there is no confusion, the KKT complementarity condi-
tions are abbreviated the KKT conditions.

The KKT complementarity condition means that if α∗
i > 0, gi(x∗) = 0 (it

is called active); and if α∗
i = 0, gi(x∗) ≥ 0 (it is called inactive).

C.2 Properties of Solutions

The optimal solution can be interpreted geometrically. From (C.4),

∂L(x∗,α∗,β∗)
∂x

=
∂f(x∗)

∂x
−

k∑
i=1

αi
∂gi(x∗)

∂x
+

o∑
i=1

βi
∂hi(x∗)

∂x
= 0. (C.9)

If some inequality constraints are inactive (i.e., the associated Lagrange mul-
tipliers are zero) for the optimal solution, we can discard the associated terms
from (C.9). If they are active, they can be treated as the equality constraints.
Thus, without loss of generality, we can assume that the inequality constraints
are all inactive. Then the optimal solution must satisfy

−∂f(x∗)
∂x

=
o∑

i=1

β∗
i

∂hi(x∗)
∂x

. (C.10)

The negative gradient of f(x), −∂f(x)/∂x, points the direction in which
f(x) decreases the most. And at the optimal solution the negative gradi-
ent must be perpendicular to the equality constraint hi(x) = 0 or parallel to
∂hi(x∗)/∂x. Therefore, the negative gradient must be in the subspace spanned
by ∂gi(x∗)/∂x (i = 1, . . . , o), which is equivalent to (C.10).

If Q is positive definite, the solution is unique. And if Q is positive semi-
definite, the solution may not be unique. But if xo and x′

o are solutions,
λxo + (1 − λ)x′

o, where 1 ≥ λ ≥ 0, is also a solution.
For the optimal solution (x∗,α∗,β∗), the following relation holds:

L(x,α∗,β∗) ≥ L(x∗,α∗,β∗) ≥ L(x∗,α,β). (C.11)

Namely, L(x, α, β) is minimized with respect to x and maximized with re-
spect to α and β. Thus the optimal point is a saddle point.

C.2 Properties of Solutions 311

Example C.2. Consider the following problem. Minimize

f(x) =
1
2

xT Qx (C.12)

subject to

2 ≥ x1 + x2 ≥ 1, (C.13)

where x = (x1 x2)T and Q is positive definite:

Q =

(
1 1

2
1
2 1

)
. (C.14)

Because

L(x,α) =
1
2

(x2
1 + x1x2 + x2

2) − α1 (x1 + x2 − 1) − α2 (2 − x1 − x2), (C.15)

the KKT conditions are given by

∂L(x,α)
∂x1

= x1 +
1
2

x2 − α1 + α2 = 0, (C.16)

∂L(x,α)
∂x2

=
1
2

x1 + x2 − α1 + α2 = 0, (C.17)

α1 (x1 + x2 − 1) = 0, α2 (2 − x1 − x2) = 0, (C.18)
α1 ≥ 0, α2 ≥ 0. (C.19)

Subtracting (C.17) from (C.16), we obtain x1 = x2. Therefore, from f(x) =
3 x2

1/2 and the KKT conditions, the optimal solution satisfies

x1 = x2 =
1
2
, α1 =

3
2
, α2 = 0. (C.20)

Thus the solution is unique (see Fig. C.1).
Let Q be positive semidefinite:

Q =
(

1 1
1 1

)
. (C.21)

Because

L(x,α) =
1
2

(x1 + x2)2 − α1 (x1 + x2 − 1) − α2 (2 − x1 − x2), (C.22)

the KKT conditions are given by

∂L(x,α)
∂x1

=
∂L(x,α)

∂x2
= x1 + x2 − α1 + α2 = 0, (C.23)

α1 (x1 + x2 − 1) = 0, α2 (2 − x1 − x2) = 0, (C.24)
α1 ≥ 0, α2 ≥ 0. (C.25)

312 C Quadratic Programming

x10

2

1

21

x2

1/2

1/2

Fig. C.1. Unique solution with a positive definite matrix

So long as x1 + x2 is constant, the value of the objective function does
not change. Thus the optimal solution satisfies x1 + x2 = 1. Therefore, from
(C.23) and (C.24), the optimal solution satisfies

x1 + x2 = 1, α1 = 1, α2 = 0. (C.26)

Thus the solution is nonunique (see Fig. C.2).

x10

2

1

21

x2

1/2

1/2

Fig. C.2. Nonunique solution with a positive semidefinite matrix

D

Positive Semidefinite Kernels and Reproducing
Kernel Hilbert Space

Support vector machines are based on the theory of reproducing kernel Hilbert
space. Here, we summarize some of the properties of positive semidefinite
kernels and reproducing kernel Hilbert space based on [30].

D.1 Positive Semidefinite Kernels

Definition D.1. Let H(x,x′) be a real-valued symmetric function with x
and x′ being m-dimensional vectors. For any set of data {x1, . . . ,xM} and
hM = (h1, . . . , hM)T with M being any natural number, if

hT
MHMhM ≥ 0 (D.1)

is satisfied (i.e., HM is a positive semidefinite matrix), we call H(x,x′) a
positive semidefinite kernel, where

HM =

⎛
⎜⎝

H(x1,x1) · · · H(x1,xM)
...

. . .
...

H(xM ,x1) · · · H(xM ,xM)

⎞
⎟⎠ . (D.2)

If (D.1) is satisfied under the constraint

M∑
i=1

hi = 0, (D.3)

H(x,x′) is called a conditionally positive semidefinite kernel.

From the definition it is obvious that if H(x,x′) is positive semidefinite, it
is also conditionally positive semidefinite. In the following we discuss several
properties of (conditionally) positive semidefinite kernels that are useful for
constructing positive semidefinite kernels.

314 D Positive Semidefinite Kernels and Reproducing Kernel Hilbert Space

Theorem D.2. If
H(x,x′) = a, (D.4)

where a > 0, H(x,x′) is positive semidefinite.

Proof. Because for any natural number M ,

HM = (
√

a, . . . ,
√

a)T (
√

a, . . . ,
√

a), (D.5)

H(x,x′) is positive semidefinite. �

Theorem D.3. If H1(x,x′) and H2(x,x′) are positive semidefinite kernels,

H(x,x′) = a1H1(x,x′) + a2H2(x,x′) (D.6)

is also positive semidefinite, where a1 and a2 are positive.

Proof. Because for any M , hi, and xi

hT
M (a1H1M + a2H2M)hM = a1hT

MH1MhM + a2hT
MH2MhM ≥ 0, (D.7)

H(x,x′) is positive semidefinite. �

Theorem D.4. If H(x,x′) = f(x) f(x′), where f(x) is an arbitrary scalar
function, H(x,x′) is positive semidefinite.

Proof. Because for any M , hi, and xi

M∑
i,j=1

hi hj f(xi) f(xj) =

(
M∑
i=1

hi f(xi)

)2

≥ 0, (D.8)

H(x,x′) is positive semidefinite. �

Theorem D.5. If H1(x,x′) and H2(x,x′) are positive semidefinite,

H(x,x′) = H1(x,x′) H2(x,x′) (D.9)

is also positive semidefinite.

Proof. It is sufficient to show that if M ×M matrices A = {aij} and B = {bij}
are positive semidefinite, {aij bij} is also positive semidefinite.

Because A is positive semidefinite, A is expressed by A = FT F , where F
is an M × M matrix. Then aij = fT

i fj , where fj is the jth column vector of
F . Thus for arbitrary h1, . . . , hM ,

M∑
i,j=1

hi hj fT
i fj bij =

M∑
i,j=1

(hi fi)T (hj fj) bij ≥ 0.� (D.10)

D.1 Positive Semidefinite Kernels 315

Example D.6. The linear kernel H(x,x′) = xT x is positive semidefinite be-
cause HM = (x1, . . . ,xM)T (x1, . . . ,xM). Thus, from Theorems D.2 to D.5
the polynomial kernel given by H(x,x′) = (1+xT x′)d is positive semidefinite.

Corollary D.7. If H(x,x′) and H ′(y,y′) are positive semidefinite kernels,
where x and y may be of different dimensions, H(x,x′) H ′(y,y′) is also a
positive semidefinite kernel.

Corollary D.8. Let H(x,x′) be positive semidefinite and satisfy

|H(x,x′)| ≤ ρ, (D.11)

where ρ > 0. Then if

f(y) =
∞∑

i=1

ai yi (D.12)

converges for |y| ≤ ρ, where ai ≥ 0 for all integers i, the composed kernel
f(H(x,x′)) is also positive semidefinite. �

Proof. From Theorem D.5, Hi(x,x′) is positive semidefinite. Then from The-
orem D.5,

N∑
i=0

ai Hi(x,x′) (D.13)

is positive semidefinite for all integers N . Therefore, so is f(H(x,x′)). �

From Corollary D.8, especially for positive semidefinite kernel H(x,x′),
exp(H(x,x′)) is also positive semidefinite.

In the following we clarify the relations between positive and conditionally
positive semidefinite kernels.

Lemma D.9. Let

H(x,x′) = K(x,x′) + K(x0,x0) − K(x,x0) − K(x′,x0). (D.14)

Then H(x,x′) is positive semidefinite, if and only if K(x,x′) is conditionally
positive semidefinite.

Proof. For {x1, . . . ,xM} and hM = (h1, . . . , hM)T with

M∑
i=1

hi = 0, (D.15)

we have
hT

MHMhM = hT
MKMhM . (D.16)

Thus, if H(x,x′) is positive semidefinite, K(x,x′) is conditionally positive
semidefinite.

316 D Positive Semidefinite Kernels and Reproducing Kernel Hilbert Space

On the other hand, suppose that K(x,x′) is conditionally positive
semidefinite. Then for {x1, . . . ,xM} and hM = (h1, . . . , hM)T with

h0 = −
M∑
i=1

hi, (D.17)

we have

0 ≤
M∑

i,j=0

hi hj K(xi,xj)

=
M∑

i,j=1

hi hj K(xi,xj) +
M∑
i=1

hi h0 K(xi,x0) +
M∑

j=1

h0 hj K(x0,xj)

+h2
0 K(x0,x0)

=
M∑

i,j=1

hi hj H(xi,xj). (D.18)

Therefore, H(x,x′) is positive semidefinite. �

Theorem D.10. Kernel K(x,x′) is conditionally positive semidefinite if and
only if exp(γ K(x,x′)) is positive semidefinite for any positive γ.

Proof. If exp(γ K(x,x′)) is positive semidefinite, exp(γ K(x,x′)) − 1 is con-
ditionally positive semidefinite. So is the limit

K(x,x′) = lim
γ→+0

exp(γ K(x,x′)) − 1
γ

. (D.19)

Now let K(x,x′) be conditionally positive semidefinite and choose some
x0 and H(x,x′) as in Lemma D.9. Then for positive γ

γK(x,x′) = γH(x,x′) − γK(x0,x0) + γK(x,x0) + γK(x′,x0). (D.20)

Thus,

exp(γK(x,x′)) = exp(γH(x,x′)) exp(−γK(x0,x0))
× exp(γK(x,x0)) exp(γK(x′,x0)). (D.21)

From Theorems D.4 and D.5 and Corollary D.8, exp(γK(x,x′)) is positive
semidefinite. �

Example D.11. Kernel H(x,x′) = −‖x − x′‖2 is conditionally positive
semidefinite because for

∑M
i hi = 0,

D.2 Reproducing Kernel Hilbert Space 317

hT
M HM hM = −

M∑
i=1

hi hj ‖xi − xj‖2

= −
M∑

i,j=1

hi hj (xT
i xi − 2xT

i xj + xT
j xj)

= 2

(
M∑
i=1

hi xi

)T (M∑
i=1

hi xi

)
≥ 0. (D.22)

Thus, exp(−γ ‖x − x′‖2) is positive semidefinite.

D.2 Reproducing Kernel Hilbert Space

Because a positive semidefinite kernel has the associated feature space called
the reproducing kernel Hilbert space (RKHS), support vector machines can
determine the optimal hyperplane in that space using the kernel trick. In
this section, we discuss reproducing kernel Hilbert spaces for positive and
conditionally positive semidefinite kernels.

For the positive semidefinite kernels, the following theorem holds.
Theorem D.12. Let X be the input space and H(x,x′) (x,x′ ∈ X) be a
positive semidefinite kernel. Let H0 be the space spanned by the functions
{Hx |x ∈ X} where

Hx(x′) = H(x,x′). (D.23)
Then there exist a Hilbert space H, which is a complete space of H0, and the
mapping from X to H such that

H(x,x′) = 〈Hx, Hx′〉. (D.24)

Here, instead of xT x′, we use 〈x,x′〉 to denote the dot-product.

Proof. Let Hx(x′) = H(x,x′) and H0 be a linear subspace generated by the
functions {Hx |x ∈ X}. Then for f, g ∈ H0 expressed by

f =
∑
xi∈X

ci Hxi
, (D.25)

g =
∑

x′
j∈X

dj Hx′
j
, (D.26)

we define the dot-product as follows:

〈f, g〉 =
∑

x′
j∈X

dj f(x′
j)

=
∑

xi,x′
j∈X

ci dj H(xi,x′
j)

=
∑
xi∈X

ci g(xi). (D.27)

318 D Positive Semidefinite Kernels and Reproducing Kernel Hilbert Space

Now we show that (D.27) satisfies the properties of the dot-product.
Clearly, (D.27) is symmetric and linear. Also, according to the assumption
of H(x,x′) being positive semidefinite,

〈f, f〉 =
∑

xi,xj∈X

ci cj H(xi,xj) ≥ 0 (D.28)

is satisfied. Here, the strict equality holds if and only if f is identically zero.
Thus, (D.27) is the dot-product. Hence, H0 is a pre-Hilbert space and its
completion H is a Hilbert space, which is called RKHS associated with Hx.

From (D.27) the following reproducing property is readily obtained:

〈f, Hx〉 = f(x). (D.29)

In particular,
〈Hx, Hx′〉 = H(x,x′).� (D.30)

For a conditionally positive semidefinite kernel, for f ∈ H0 the following
theorem holds.

Theorem D.13. Let H(x,x′) (x,x′ ∈ X) be a conditionally positive
semidefinite kernel. Then there exist a Hilbert space H and a mapping Kx

from X to H such that

H(x,x′) − 1
2
H(x,x) − 1

2
H(x′,x′) = −‖Kx − Kx′‖2. (D.31)

Proof. For x0 we define

K(x,x′) =
1
2

(H(x,x′) + H(x0,x0) − H(x,x0) − H(x′,x0)) , (D.32)

which is a positive semidefinite kernel from Lemma D.9. Let H be the associ-
ated RKHS for K(x,x′) and Kx(x′) = K(x,x′). Then

‖Kx − Kx′‖2 = K(x,x) + K(x′,x′) − 2K(x,x′)

= −H(x,x′) +
1
2
H(x,x) +

1
2
H(x′,x′). (D.33)

Thus the theorem holds. �

References

1. S. Abe. Neural Networks and Fuzzy Systems: Theory and Applications. Kluwer
Academic Publishers, Norwell, MA, 1997.

2. S. Abe. Dynamic cluster generation for a fuzzy classifier with ellipsoidal
regions. IEEE Transactions on Systems, Man, and Cybernetics—Part B,
28(6):869–76, 1998.

3. S. Abe. Pattern Classification: Neuro-Fuzzy Methods and Their Comparison.
Springer-Verlag, London, 2001.

4. S. Abe. Analysis of support vector machines. In H. Bourlard, T. Adali, S. Ben-
gio, J. Larsen, and S. Douglas, editors, Neural Networks for Signal Processing
XII—Proceedings of the 2002 IEEE Signal Processing Society Workshop, pages
89–98, 2002.

5. S. Abe. Analysis of multiclass support vector machines. In Proceedings of
International Conference on Computational Intelligence for Modelling, Control
and Automation (CIMCA 2003), pages 385–96, Vienna, Austria, 2003.

6. S. Abe. On invariance of support vector machines. Presented at the
Fourth International Symposium on Intelligent Data Engineering and Learn-
ing (IDEAL 2003) but not included in the proceedings (http://www2.kobe-
u.ac.jp/˜abe/pdf/ideal2003.pdf), 2003.

7. S. Abe. Fuzzy LP-SVMs for multiclass problems. In Proceedings of the Twelfth
European Symposium on Artificial Neural Networks (ESANN 2004), pages 429–
34, Bruges, Belgium, 2004.

8. S. Abe, Y. Hirokawa, and S. Ozawa. Steepest ascent training of support vector
machines. In E. Damiani, L. C. Jain, R. J. Howlett, and N. Ichalkaranje, edi-
tors, Knowledge-Based Intelligent Engineering Systems and Allied Technologies
(KES 2002), volume 82 Frontiers in Artificial Intelligence and Applications,
Part 2, pages 1301–5, IOS Press, Amsterdam, the Netherlands, 2002.

9. S. Abe and T. Inoue. Fast training of support vector machines by extracting
boundary data. In G. Dorffner, H. Bischof, and K. Hornik, editors, Artificial
Neural Networks (ICANN 2001)—Proceedings of International Conference, Vi-
enna, Austria, pages 308–13. Springer-Verlag, Berlin, Germany, 2001.

10. S. Abe and T. Inoue. Fuzzy support vector machines for multiclass problems.
In Proceedings of the Tenth European Symposium on Artificial Neural Networks
(ESANN 2002), pages 113–8, Bruges, Belgium, 2002.

320 References

11. S. Abe and M.-S. Lan. A method for fuzzy rules extraction directly from
numerical data and its application to pattern classification. IEEE Transactions
on Fuzzy Systems, 3(1):18–28, 1995.

12. S. Abe and K. Sakaguchi. Generalization improvement of a fuzzy classifier with
ellipsoidal regions. In Proceedings of the Tenth IEEE International Conference
on Fuzzy Systems, volume 1, pages 207–10, Melbourne, Australia, 2001.

13. S. Abe and R. Thawonmas. A fuzzy classifier with ellipsoidal regions. IEEE
Transactions on Fuzzy Systems, 5(3):358–68, 1997.

14. E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning Re-
search, 1:113–41, 2000.

15. S. Amari and S. Wu. Improving support vector machine classifiers by modifying
kernel functions. Neural Networks, 12(6):783–9, 1999.

16. S. Amari and S. Wu. An information-geometrical method for improving the
performance of support vector machine classifiers. In Proceedings of the Ninth
International Conference on Artificial Neural Networks (ICANN ’99), vol-
ume 1, pages 85–90, Edinburgh, UK, 1999.

17. D. Anguita, A. Boni, and S. Pace. Fast training of support vector machines
for regression. In Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN 2000), volume 5, pages 210–4, Como,
Italy, 2000.

18. D. Anguita, A. Boni, and S. Ridella. Evaluating the generalization ability of
support vector machines through the bootstrap. Neural Processing Letters,
11(1):51–8, 2000.

19. D. Anguita, S. Ridella, and D. Sterpi. A new method for multiclass support
vector machines. In Proceedings of International Joint Conference on Neural
Networks (IJCNN 2004), volume 1, pages 407–12, Budapest, Hungary, 2004.

20. C. Angulo, X. Parra, and A. Català. An [sic] unified framework for “all data
at once” multi-class support vector machines. In Proceedings of the Tenth
European Symposium on Artificial Neural Networks (ESANN 2002), pages 161–
6, Bruges, Belgium, 2002.

21. J. K. Anlauf and M. Biehl. The Adatron—An adaptive perceptron algorithm.
Europhysics Letters, 10:687–92, 1989.

22. K. Baba, I. Enbutu, and M. Yoda. Explicit representation of knowledge ac-
quired from plant historical data using neural network. In Proceedings of 1990
IJCNN International Joint Conference on Neural Networks, volume 3, pages
155–60, San Diego, 1990.

23. B. Baesens, S. Viaene, T. Van Gestel, J. A. K. Suykens, G. Dedene, B. De
Moor, and J. Vanthienen. An empirical assessment of kernel type performance
for least squares support vector machine classifiers. In Proceedings of the Fourth
International Conference on Knowledge-Based Intelligent Engineering Systems
and Allied Technologies (KES 2000), volume 1, pages 313–6, Brighton, UK,
2000.

24. T. Ban and S. Abe. Spatially chunking support vector clustering algorithm.
In Proceedings of International Joint Conference on Neural Networks (IJCNN
2004), volume 1, pages 413–8, Budapest, Hungary, 2004.

25. A. Barla, E. Franceschi, F. Odone, and A. Verri. Image kernels. In S.-W. Lee
and A. Verri, editors, Pattern Recognition with Support Vector Machines: First
International Workshop, SVM 2002, Niagara Falls, pages 83–96. Springer-
Verlag, Berlin, Germany, 2002.

References 321

26. G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel
approach. Neural Computation, 12(10):2385–404, 2000.

27. G. Baudat and F. Anouar. Kernel-based methods and function approximation.
In Proceedings of International Joint Conference on Neural Networks (IJCNN
’01), volume 2, pages 1244–9, Washington, DC, 2001.

28. A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clus-
tering. Journal of Machine Learning Research, 2:125–37, 2001.

29. K. P. Bennett. Combining support vector and mathematical programming
methods for classification. In B. Schölkopf, C. J. C. Burges, and A. J. Smola,
editors, Advances in Kernel Methods: Support Vector Learning, pages 307–26.
MIT Press, Cambridge, MA, 1999.

30. C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups:
Theory of Positive Definite and Related Functions. Springer-Verlag, New York,
1984.

31. D. P. Bertsekas. Nonlinear Programming, second edition. Athena Scientific,
Belmont, MA, 1999.

32. J. C. Bezdek, J. M. Keller, R. Krishnapuram, L. I. Kuncheva, and N. R. Pal.
Will the real iris data please stand up? IEEE Transactions on Fuzzy Systems,
7(3):368–9, 1999.

33. J. C. Bezdek, J. Keller R. Krisnapuram, and N. R. Pal. Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing. Kluwer Academic
Publishers, Norwell, MA, 1999.

34. J. Bi, K. P. Bennett, M. Embrechts, C. Breneman, and M. Song. Dimensionality
reduction via sparse support vector machines. Journal of Machine Learning
Research, 3:1229–43, 2003.

35. C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Oxford, UK, 1995.

36. S. Borer and W. Gerstner. Support vector representation of multi-categorical
data. In J. R. Dorronsoro, editor, Artificial Neural Networks (ICANN 2002)—
Proceedings of International Conference, Madrid, Spain, pages 733–8. Springer-
Verlag, Berlin, Germany, 2002.

37. P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimiza-
tion and support vector machines. In Proceedings of the Fifteenth International
Conference on Machine Learning (ICML ’98), pages 82–90, Madison, 1998.

38. P. S. Bradley and O. L. Mangasarian. Massive data discrimination via lin-
ear support vector machines. Optimization Methods and Software, 13(1):1–10,
2000.

39. V. L. Brailovsky, O. Barzilay, and R. Shahave. On global, local, mixed and
neighborhood kernels for support vector machines. Pattern Recognition Letters,
20(11–13):1183–90, 1999.

40. E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support
vector machines. Computational Optimization and Applications, 12(1–3):53–
79, 1999.

41. M. Brown. Exploring the set of sparse, optimal classifiers. In Proceedings
of Artificial Neural Networks in Pattern Recognition (ANNPR 2003), pages
178–84, Florence, Italy, 2003.

42. M. Brown, N. P. Costen, and S. Akamatsu. Efficient calculation of the complete
optimal classification set. In Proceedings of the Seventeenth International Con-
ference on Pattern Recognition (ICPR 2004), volume 2, pages 307–10, Cam-
bridge, UK, 2004.

322 References

43. C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, edi-
tor, Machine Learning, Proceedings of the Thirteenth International Conference
(ICML ’96), pages 71–7. Morgan Kaufmann, San Francisco, 1996.

44. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–67, 1998.

45. C. J. C. Burges. Geometry and invariance in kernel based methods. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Ker-
nel Methods: Support Vector Learning, pages 89–116. MIT Press, Cambridge,
MA, 1999.

46. C. J. C. Burges and D. J. Crisp. Uniqueness of the SVM solution. In S. A.
Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information
Processing Systems 12, pages 223–9. MIT Press, Cambridge, MA, 2000.

47. C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of sup-
port vector machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems 9, pages 375–81, 1997.

48. C. Campbell, T.-T. Frieß, and N. Cristianini. Maximal margin classification
using the KA algorithm. In Proceedings of the First International Symposium
on Intelligent Data Engineering and Learning (IDEAL ’98), pages 355–62,
Hong Kong, China, 1998.

49. D. Caragea, D. Cook, and V. Honavar. Towards simple, easy-to-understand, yet
accurate classifiers. In Proceedings of the Third IEEE International Conference
on Data Mining (ICDM 2003), pages 497–500, Melbourne, FL, 2003.

50. G. L. Cash and M. Hatamian. Optical character recognition by the method of
moments. Computer Vision, Graphics, and Image Processing, 39(3):291–310,
1987.

51. G. Cauwenberghs and T. Poggio. Incremental and decremental support vector
machine learning. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 409–15. MIT
Press, Cambridge, MA, 2000.

52. G. C. Cawley and N. L. C. Talbot. Manipulation of prior probabilities in
support vector classification. In Proceedings of International Joint Conference
on Neural Networks (IJCNN ’01), volume 4, pages 2433–8, Washington, DC,
2001.

53. G. C. Cawley and N. L. C. Talbot. Efficient formation of a basis in a kernel
feature space. In Proceedings of the Tenth European Symposium on Artificial
Neural Networks (ESANN 2002), pages 1–6, Bruges, Belgium, 2002.

54. G. C. Cawley and N. L. C. Talbot. A greedy training algorithm for sparse least-
squares support vector machines. In J. R. Dorronsoro, editor, Artificial Neural
Networks (ICANN 2002)—Proceedings of International Conference, Madrid,
Spain, pages 681–6. Springer-Verlag, Berlin, Germany, 2002.

55. G. C. Cawley and N. L. C. Talbot. Efficient model selection for kernel logis-
tic regression. In Proceedings of the Seventeenth International Conference on
Pattern Recognition (ICPR 2004), volume 2, pages 439–42, Cambridge, UK,
2004.

56. O. Chapelle and V. Vapnik. Model selection for support vector machines.
In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural
Information Processing Systems 12, pages 230–6. MIT Press, Cambridge, MA,
2000.

References 323

57. J.-H. Chen. M-estimator based robust kernels for support vector machines. In
Proceedings of the Seventeenth International Conference on Pattern Recogni-
tion (ICPR 2004), volume 1, pages 168–71, Cambridge, UK, 2004.

58. S. Chen, S. R. Gunn, and C. J. Harris. The relevance vector machine technique
for channel equalization application. IEEE Transactions on Neural Networks,
12(6):1529–32, 2001.

59. S. Chen, S. R. Gunn, and C. J. Harris. Errata to “The relevance vector machine
technique for channel equalization application.” IEEE Transactions on Neural
Networks, 13(4):1024, 2002.

60. V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and
Methods. John Wiley & Sons, New York, 1998.

61. S. L. Chiu. Fuzzy model identification based on cluster estimation. Journal of
Intelligent and Fuzzy Systems, 2:267–78, 1994.

62. C. S. Chu, I. W. Tsang, and J. T. Kwok. Scaling up support vector data
description by using core-sets. In Proceedings of International Joint Confer-
ence on Neural Networks (IJCNN 2004), volume 1, pages 425–31, Budapest,
Hungary, 2004.

63. V. Chvátal. Linear Programming. W. H. Freeman and Company, New York,
1983.

64. C. Cortes, P. Haffner, and M. Mohri. Rational kernels. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Sys-
tems 15, pages 601–8. MIT Press, Cambridge, MA, 2003.

65. K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. In Proceedings of the Thirteenth Annual Conference on
Computational Learning Theory (COLT 2000), pages 35–46, Palo Alto, CA,
2000.

66. K. Crammer and Y. Singer. Improved output coding for classification using
continuous relaxation. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 437–43. MIT
Press, Cambridge, MA, 2001.

67. K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research, 3:951–91, 2003.

68. N. Cristianini and C. Campbell. Dynamically adapting kernels in support vec-
tor machines. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances
in Neural Information Processing Systems 11, pages 204–10. MIT Press, Cam-
bridge, MA, 1999.

69. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-Based Learning Methods. Cambridge University
Press, Cambridge, UK, 2000.

70. R. S. Crowder. Predicting the Mackey-Glass time series with cascade-
correlation learning. In Proceedings of 1990 Connectionist Models Summer
School, pages 117–23, Carnegie Mellon University, 1990.

71. M. B. de Almeida, A. de Pádua Braga, and J. P. Braga. SVM-KM: Speeding
SVMs learning with a priori cluster selection and k-means. In Proceedings of
the Sixth Brazilian Symposium on Neural Networks (SBRN 2000), volume 1,
pages 162–7, Rio de Janeiro, Brazil, 2000.

72. N. de Freitas, M. Milo, P. Clarkson, M. Niranjan, and A. Gee. Sequential
support vector machines. In Neural Networks for Signal Processing IX—
Proceedings of the 1999 IEEE Signal Processing Society Workshop, pages 31–
40, 1999.

324 References

73. T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263–86,
1995.

74. T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector
solutions. Journal of Machine Learning Research, 2:293–7, 2001.

75. P. M. L. Drezet and R. F. Harrison. A new method for sparsity control in
support vector classification and regression. Pattern Recognition, 34(1):111–
25, 2001.

76. K. Duan, S. S. Keerthi, and A. N. Poo. An empirical evaluation of simple
performance measures for tuning SVM hyperparameters. In Proceedings of the
Eighth International Conference on Neural Information Processing (ICONIP-
2001), Paper ID# 159, Shanghai, China, 2001.

77. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John
Wiley & Sons, New York, 1973.

78. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall/CRC Press, Boca Raton, FL, 1993.

79. T. Evgeniou, M. Pontil, C. Papageorgiou, and T. Poggio. Image representations
for object detection using kernel classifiers. In Proceedings of Asian Conference
on Computer Vision (ACCV 2000), pages 687–92, Taipei, Taiwan, 2000.

80. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support
vector machines. Advances in Computational Mathematics, 13(1):1–50, 2000.

81. J. Feng and P. Williams. The generalization error of the symmetric and scaled
support vector machines. IEEE Transactions on Neural Networks, 12(5):1255–
60, 2001.

82. R. Fernández. Behavior of the weights of a support vector machine as a function
of the regularization parameter C. In Proceedings of the Eighth International
Conference on Artificial Neural Networks (ICANN ’98), volume 2, pages 917–
22, Skövde, Sweden, 1998.

83. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel rep-
resentations. Journal of Machine Learning Research, 2:243–64, 2001.

84. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7:179–88, 1936.

85. P. Frasconi, A. Passerini, and A. Vullo. A two-stage SVM architecture for
predicting the disulfide bonding state of cysteines. In H. Bourlard, T. Adali,
S. Bengio, J. Larsen, and S. Douglas, editors, Neural Networks for Signal Pro-
cessing XII—Proceedings of the 2002 IEEE Signal Processing Society Work-
shop, pages 25–34, 2002.

86. Y. Freund and R. E. Schapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–96, 1999.

87. F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters. In
Proceedings of the Twelfth European Symposium on Artificial Neural Networks
(ESANN 2004), pages 519–24, Bruges, Belgium, 2004.

88. T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel-Adatron algorithm: A
fast and simple learning procedure for support vector machines. In Proceedings
of the Fifteenth International Conference on Machine Learning (ICML ’98),
pages 188–96, Madison, 1998.

89. X. Fu, C.-J. Ong, S. Keerthi, G. G. Hung, and L. Goh. Extracting the knowl-
edge embedded in support vector machines. In Proceedings of International
Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 291–6,
Budapest, Hungary, 2004.

References 325

90. K. Fukunaga. Introduction to Statistical Pattern Recognition, second edition.
Academic Press, San Diego, 1990.

91. G. Fumera and F. Roli. Support vector machines with embedded reject option.
In S.-W. Lee and A. Verri, editors, Pattern Recognition with Support Vector
Machines: First International Workshop, SVM 2002, Niagara Falls, pages 68–
82. Springer-Verlag, Berlin, Germany, 2002.

92. A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
(UAI ’98), pages 148–55, Madison, 1998.

93. C. Gentile. A new approximate maximal margin classification algorithm. Jour-
nal of Machine Learning Research, 2:213–42, 2001.

94. T. Van Gestel, J. A. K. Suykens, J. De Brabanter, B. De Moor, and J. Van-
dewalle. Least squares support vector machine regression for discriminant
analysis. In Proceedings of International Joint Conference on Neural Networks
(IJCNN ’01), volume 4, pages 2445–50, Washington, DC, 2001.

95. M. Girolami. Mercer kernel-based clustering in feature space. IEEE Transac-
tions on Neural Networks, 13(3):780–4, 2002.

96. G. H. Golub and C. F. Van Loan. Matrix Computations, third edition. The
Johns Hopkins University Press, Baltimore, 1996.

97. E. Gose, R. Johnsonbaugh, and S. Jost. Pattern Recognition and Image Anal-
ysis. Prentice Hall, Upper Saddle River, NJ, 1996.

98. T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K.-R. Müller,
K. Obermayer, and R. Williamson. Classification on proximity data with LP-
machines. In Proceedings of the Ninth International Conference on Artificial
Neural Networks (ICANN ’99), volume 1, pages 304–9, Edinburgh, UK, 1999.

99. Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in SVMs.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural In-
formation Processing Systems 15, pages 569–76. MIT Press, Cambridge, MA,
2003.

100. Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy. A new multi-class SVM
based on a uniform convergence result. In Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks (IJCNN 2000), vol-
ume 4, pages 183–8, Como, Italy, 2000.

101. S. R. Gunn. Support vector machines for classification and regression. Techni-
cal Report ISIS-1-98, Department of Electronics and Computer Science, Uni-
versity of Southampton, 1998.

102. S. R. Gunn and M. Brown. SUPANOVA: A sparse, transparent modelling
approach. In Neural Networks for Signal Processing IX—Proceedings of the
1999 IEEE Signal Processing Society Workshop, pages 21–30, 1999.

103. G. Guo, S. Z. Li, and K. L. Chan. Support vector machines for face recognition.
Image and Vision Computing, 19(9–10):631–8, 2001.

104. I. Guyon and D. G. Stork. Linear discriminant and support vector classifiers.
In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 147–69. MIT Press, Cambridge,
MA, 2000.

105. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1–3):389–
422, 2002.

326 References

106. A. Hashizume, J. Motoike, and R. Yabe. Fully automated blood cell differential
system and its application. In Proceedings of the IUPAC Third International
Congress on Automation and New Technology in the Clinical Laboratory, pages
297–302, Kobe, Japan, 1988.

107. T. Hastie and R. Tibshirani. Classification by pairwise coupling. In M. I.
Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information
Processing Systems 10, pages 507–13. MIT Press, Cambridge, MA, 1998.

108. S. Haykin. Neural Networks: A Comprehensive Foundation, second edition.
Prentice Hall, Upper Saddle River, NJ, 1999.

109. R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
Cambridge, MA, 2002.

110. R. Herbrich and J. Weston. Adaptive margin support vector machines for
classification. In Proceedings of the Ninth International Conference on Artificial
Neural Networks (ICANN ’99), volume 2, pages 880–5, Edinburgh, UK, 1999.

111. Y. Hirokawa and S. Abe. Training of support vector regressors based on the
steepest ascent method. In Proceedings of the Ninth International Conference
on Neural Information Processing (ICONIP ’02), volume 2, pages 552–5, Sin-
gapore, 2002.

112. Y. Hirokawa and S. Abe. Steepest ascent training of support vector regressors.
IEEJ Transactions of Electronics, Information and Systems, 124(10):2066–73,
2004 (in Japanese).

113. K. Hotta. Support vector machine with local summation kernel for robust
face recognition. In Proceedings of the Seventeenth International Conference
on Pattern Recognition (ICPR 2004), volume 3, pages 482–5, Cambridge, UK,
2004.

114. C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–25, 2002.

115. T. M. Huang and V. Kecman. Bias term b in SVMs again. In Proceedings
of the Twelfth European Symposium on Artificial Neural Networks (ESANN
2004), pages 441–8, Bruges, Belgium, 2004.

116. T. Inoue and S. Abe. Fuzzy support vector machines for pattern classification.
In Proceedings of International Joint Conference on Neural Networks (IJCNN
’01), volume 2, pages 1449–54, Washington, DC, 2001.

117. T. Inoue and S. Abe. Improvement of generalization ability of multiclass sup-
port vector machines by introducing fuzzy logic and Bayes theory. Transactions
of the Institute of Systems, Control and Information Engineers, 15(12):643–51,
2002 (in Japanese).

118. K. Ito and R. Nakano. Optimizing support vector regression hyperparameters
based on cross-validation. In Proceedings of International Joint Conference on
Neural Networks (IJCNN 2003), volume 3, pages 2077–82, Portland, OR, 2003.

119. J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE
Transactions on Systems, Man, and Cybernetics, 23(3):665–85, 1993.

120. Jayadeva, A. K. Deb, and S. Chandra. Binary classification by SVM based
tree type neural networks. In Proceedings of the 2002 International Joint Con-
ference on Neural Networks (IJCNN ’02), volume 3, pages 2773–8, Honolulu,
2002.

121. J.-T. Jeng and C.-C. Chuang. A novel approach for the hyperparameters
of support vector regression. In Proceedings of the 2002 International Joint
Conference on Neural Networks (IJCNN ’02), volume 1, pages 642–7, Honolulu,
2002.

References 327

122. T. Joachims. Estimating the generalization performance of an SVM efficiently.
In Proceedings of the Seventeenth International Conference on Machine Learn-
ing (ICML-2000), pages 431–8, Stanford, CA, 2000.

123. T. Joachims. Learning to Classify Text Using Support Vector Machines: Meth-
ods, Theory and Algorithms. Kluwer Academic Publishers, Norwell, MA, 2002.

124. E. M. Jordaan and G. F. Smits. Robust outlier detection using SVM for re-
gression. In Proceedings of International Joint Conference on Neural Networks
(IJCNN 2004), volume 3, pages 2017–22, Budapest, Hungary, 2004.

125. A. Juneja and C. Espy-Wilson. Speech segmentation using probabilistic pho-
netic feature hierarchy and support vector machines. In Proceedings of Inter-
national Joint Conference on Neural Networks (IJCNN 2003), volume 1, pages
675–9, Portland, OR, 2003.

126. K. Kaieda and S. Abe. A kernel fuzzy classifier with ellipsoidal regions. In
Proceedings of International Joint Conference on Neural Networks (IJCNN
2003), volume 3, pages 2043–8, Portland, OR, 2003.

127. K. Kaieda and S. Abe. KPCA-based training of a kernel fuzzy classifier with el-
lipsoidal regions. International Journal of Approximate Reasoning, 37(3):145–
253, 2004.

128. V. Kecman, T. Arthanari, and I. Hadzic. LP and QP based learning from
empirical data. In Proceedings of International Joint Conference on Neural
Networks (IJCNN ’01), volume 4, pages 2451–5, Washington, DC, 2001.

129. V. Kecman and I. Hadzic. Support vectors selection by linear programming.
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks (IJCNN 2000), volume 5, pages 193–8, Como, Italy, 2000.

130. V. Kecman, M. Vogt, and T. M. Huang. On the equality of kernel AdaTron and
sequential minimal optimization in classification and regression tasks and alike
algorithms for kernel machines. In Proceedings of the Eleventh European Sym-
posium on Artificial Neural Networks (ESANN 2003), pages 215–22, Bruges,
Belgium, 2003.

131. S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm
for SVM classifier design. Machine Learning, 46:351–60, 2002.

132. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast
iterative nearest point algorithm for support vector machine classifier design.
IEEE Transactions on Neural Networks, 11(1):124–36, 2000.

133. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Im-
provements to Platt’s SMO algorithm for SVM classifier design. Neural Com-
putation, 13:637–49, 2001.

134. B. Kijsirikul and N. Ussivakul. Multiclass support vector machines using adap-
tive directed acyclic graph. In Proceedings of the 2002 International Joint Con-
ference on Neural Networks (IJCNN ’02), volume 1, pages 980–5, Honolulu,
2002.

135. T. Kikuchi and S. Abe. Error correcting output codes vs. fuzzy support vector
machines. In Proceedings of Artificial Neural Networks in Pattern Recognition
(ANNPR 2003), pages 192–6, Florence, Italy, 2003.

136. T. Kikuchi and S. Abe. Error correcting output codes vs. fuzzy support vector
machines. Pattern Recognition Letters (to appear).

137. Y. Koshiba. Acceleration of training of support vector machines. Master’s
thesis, Graduate School of Science and Technology, Kobe University, Japan,
2004 (in Japanese).

328 References

138. Y. Koshiba and S. Abe. Comparison of L1 and L2 support vector machines.
In Proceedings of International Joint Conference on Neural Networks (IJCNN
2003), volume 3, pages 2054–9, Portland, OR, 2003.

139. Z. Kou, J. Xu, X. Zhang, and L. Ji. An improved support vector machine using
class-median vectors. In Proceedings of the Eighth International Conference
on Neural Information Processing (ICONIP-2001), Paper ID# 60, Shanghai,
China, 2001.

140. U. H.-G. Kreßel. Pairwise classification and support vector machines. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Ker-
nel Methods: Support Vector Learning, pages 255–68. MIT Press, Cambridge,
MA, 1999.

141. M.-S. Lan, H. Takenaga, and S. Abe. Character recognition using fuzzy rules
extracted from data. In Proceedings of the Third IEEE International Confer-
ence on Fuzzy Systems, volume 1, pages 415–20, Orlando, 1994.

142. G. Lebrun, C. Charrier, and H. Cardot. SVM training time reduction using
vector quantization. In Proceedings of the Seventeenth International Confer-
ence on Pattern Recognition (ICPR 2004), volume 1, pages 160–3, Cambridge,
UK, 2004.

143. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–324,
1998.

144. K. K. Lee, S. R. Gunn, C. J. Harris, and P. A. S. Reed. Classification of
imbalanced data with transparent kernels. In Proceedings of International
Joint Conference on Neural Networks (IJCNN ’01), volume 4, pages 2410–5,
Washington, DC, 2001.

145. C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels
for SVM protein classification. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages 1441–8.
MIT Press, Cambridge, MA, 2003.

146. H. Li, T. Jiang, and K. Zhang. Efficient and robust feature extraction by
maximum margin criterion. In S. Thrun, L. K. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16, pages 97–104. MIT
Press, Cambridge, MA, 2004.

147. Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine
Learning, 46(1–3):361–87, 2002.

148. Z. Li and S. Tang. Face recognition using improved pairwise coupling sup-
port vector machines. In Proceedings of the Ninth International Conference on
Neural Information Processing (ICONIP ’02), #1288, Singapore, 2002.

149. S.-P. Liao, H.-T. Lin, and C.-J. Lin. A note on the decomposition methods
for support vector regression. In Proceedings of International Joint Conference
on Neural Networks (IJCNN ’01), volume 2, pages 1474–9, Washington, DC,
2001.

150. C. Ap. M. Lima, A. L. V. Coelho, and F. J. Von Zuben. Ensembles of support
vector machines for regression problems. In Proceedings of the 2002 Interna-
tional Joint Conference on Neural Networks (IJCNN ’02), volume 3, pages
2381–6, Honolulu, 2002.

151. C.-F. Lin and S.-D. Wang. Fuzzy support vector machines. IEEE Transactions
on Neural Networks, 13(2):464–71, 2002.

152. C.-J. Lin. On the convergence of the decomposition method for support vector
machines. IEEE Transactions on Neural Networks, 12(6):1288–98, 2001.

References 329

153. C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assump-
tions. IEEE Transactions on Neural Networks, 13(1):248–50, 2002.

154. C.-J. Lin. Errata to“A Comparison of Methods for Multiclass Support Vector
Machines.” IEEE Transactions on Neural Networks, 13(4):1026–7, 2002.

155. H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 563–9, 2001.

156. B.-L. Lu, K.-A. Wang, M. Utiyama, and H. Isahara. A part-versus-part method
for massively parallel training of support vector machines. In Proceedings of
International Joint Conference on Neural Networks (IJCNN 2004), volume 1,
pages 735–40, Budapest, Hungary, 2004.

157. L. Lukas, A. Devos, J. A. K. Suykens, L. Vanhamme, S. Van Huffel, A. R.
Tate, C. Majós, and C. Arús. The use of LS-SVM in the classification of brain
tumors based on magnetic resonance spectroscopy signals. In Proceedings of
the Tenth European Symposium on Artificial Neural Networks (ESANN 2002),
pages 131–6, Bruges, Belgium, 2002.

158. J. Ma and S. Perkins. Time-series novelty detection using one-class support
vector machines. In Proceedings of International Joint Conference on Neural
Networks (IJCNN 2003), volume 3, pages 1741–5, Portland, OR, 2003.

159. E. Maeda and H. Murase. Kernel based nonlinear subspace method for pat-
tern recognition. Transactions of the Institute of Electronics, Information and
Communication Engineers D-II, J82D-II(4):600–12, 1999 (in Japanese).

160. O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support
vector machines. IEEE Transactions on Neural Networks, 10(5):1032–7, 1999.

161. D. Martinez and G. Millerioux. Support vector committee machines. In Pro-
ceedings of the Eleventh European Symposium on Artificial Neural Networks
(ESANN 2000), pages 43–8, Bruges, Belgium, 2000.

162. F. Masulli and G. Valentini. Comparing decomposition methods for classifi-
cation. In Proceedings of the Fourth International Conference on Knowledge-
Based Intelligent Engineering Systems and Allied Technologies (KES 2000),
volume 2, pages 788–91, Brighton, UK, 2000.

163. D. Mattera, F. Palmieri, and S. Haykin. An explicit algorithm for training
support vector machines. IEEE Signal Processing Letters, 6(9):243–5, 1999.

164. D. Mattera, F. Palmieri, and S. Haykin. Simple and robust methods for support
vector expansions. IEEE Transactions on Neural Networks, 10(5):1038–47,
1999.

165. E. Mayoraz and E. Alpaydin. Support vector machines for multi-class classifica-
tion. In J. Mira and J. V. Sanchez-Andres, editors, Engineering Applications of
Bio-Inspired Artificial Neural Networks (IWANN’99)—Proceedings of Interna-
tional Work—Conference on Artificial and Natural Neural Networks, Alicante,
Spain, volume 2, pages 833–42, 1999.

166. S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discrim-
inant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas,
editors, Neural Networks for Signal Processing IX—Proceedings of the 1999
IEEE Signal Processing Society Workshop, pages 41–8, 1999.

167. S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, and G. Rätsch.
Kernel PCA and de-noising in feature spaces. In M. S. Kearns, S. A. Solla,
and D. A. Cohn, editors, Advances in Neural Information Processing Systems
11, pages 536–42. MIT Press, Cambridge, MA, 1999.

330 References

168. S. Miyamoto and D. Suizu. Fuzzy c-means clustering using transformations into
high dimensional spaces. In Proceedings of the First International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD ’02), volume 2, pages 656–
60, Singapore, 2002.

169. M. Moreira and E. Mayoraz. Improved pairwise coupling classification with
correcting classifiers. In Proceedings of the Tenth European Conference on
Machine Learning (ECML-98), pages 160–71, Chemnitz, Germany, 1998.

170. K. Morikawa. Pattern classification and function approximation by kernel
least squares. Bachelor’s thesis, Electrical and Electronics Engineering, Kobe
University, Japan, 2004 (in Japanese).

171. S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time
series using support vector machines. In Neural Networks for Signal Processing
VII—Proceedings of the 1997 IEEE Signal Processing Society Workshop, pages
511–20, 1997.

172. S. Mukherjee, P. Tamayo, D. Slonim, A. Verri, T. Golub, J. P. Mesirov, and
T. Poggio. Support vector machine classification of microarray data. Technical
Report AI Memo 1677, Massachusetts Institute of Technology, 1999.

173. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2):181–201, 2001.

174. K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and
V. Vapnik. Predicting time series with support vector machines. In W. Ger-
stner, A. Germond, M. Hasler, and J.-D. Nicoud, editors, Artificial Neural
Networks (ICANN ’97)—Proceedings of the Seventh International Conference,
Lausanne, Switzerland, pages 999–1004. Springer-Verlag, Berlin, Germany,
1997.

175. C. Nakajima, M. Pontil, and T. Poggio. People recognition and pose estimation
in image sequences. In Proceedings of International Joint Conference on Neural
Networks (IJCNN 2000), volume IV, pages 189–94, Como, Italy, 2000.

176. H. Nakayama and T. Asada. Support vector machines using multi objective
programming and goal programming. In Proceedings of the Ninth International
Conference on Neural Information Processing (ICONIP ’02), volume 2, pages
1053–7, Singapore, 2002.

177. A. Navia-Vázquez, F. Pérez-Cruz, A. Artés-Rodŕiguez, and A. R. Figueiras-
Vidal. Weighted least squares training of support vector classifiers leading
to compact and adaptive schemes. IEEE Transactions on Neural Networks,
12(5):1047–59, 2001.

178. T. Nishikawa and S. Abe. Maximizing margins of multilayer neural networks.
In Proceedings of the Ninth International Conference on Neural Information
Processing (ICONIP ’02), volume 1, pages 322–6, Singapore, 2002.

179. H. Núnẽz, C. Angulo, and Català. Rule extraction from support vector ma-
chines. In Proceedings of the Tenth European Symposium on Artificial Neural
Networks (ESANN 2002), pages 107–12, Bruges, Belgium, 2002.

180. C. S. Ong and A. J. Smola. Machine learning using hyperkernels. In T. Fawcett
and N. Mishra, editors, Machine Learning, Proceedings of the Twentieth In-
ternational Conference (ICML 2003), Washington, DC, pages 568–75. AAAI
Press, Menlo Park, CA, 2003.

181. C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. In S. Thrun
S. Becker and K. Obermayer, editors, Advances in Neural Information Pro-
cessing Systems 15, pages 495–502. MIT Press, Cambridge, MA, 2003.

References 331

182. E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for
support vector machines. In Neural Networks for Signal Processing VII—
Proceedings of the 1997 IEEE Signal Processing Society Workshop, pages 276–
85, 1997.

183. S. K. Pal and S. Mitra. Neuro-Fuzzy Pattern Recognition: Methods in Soft
Computing. John Wiley & Sons, New York, 1999.

184. C. H. Park and H. Park. Efficient nonlinear dimension reduction for clustered
data using kernel functions. In Proceedings of the Third IEEE International
Conference on Data Mining (ICDM 2003), pages 243–50, Melbourne, FL, 2003.

185. J. P. Pedroso and N. Murata. Optimisation on support vector machines. In
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neu-
ral Networks (IJCNN 2000), volume 6, pages 399–404, Como, Italy, 2000.

186. F. Pérez-Cruz and A. Artés-Rodŕiguez. Puncturing multi-class support vector
machines. In J. R. Dorronsoro, editor, Artificial Neural Networks (ICANN
2002)—Proceedings of International Conference, Madrid, Spain, pages 751–6.
Springer-Verlag, Berlin, Germany, 2002.

187. F. Pérez-Cruz, G. Camps-Valls, E. Soria-Olivas, J. J. Pérez-Ruixo, A. R.
Figueiras-Vidal, and A. Artés-Rodŕiguez. Multi-dimensional function approxi-
mation and regression estimation. In J. R. Dorronsoro, editor, Artificial Neural
Networks (ICANN 2002)—Proceedings of International Conference, Madrid,
Spain, pages 757–62. Springer-Verlag, Berlin, Germany, 2002.

188. S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature
selection by gradient descent in function space. Journal of Machine Learning
Research, 3:1333–56, 2003.

189. T. Phetkaew, B. Kijsirikul, and W. Rivepiboon. Reordering adaptive directed
acyclic graphs: An improved algorithm for multiclass support vector machines.
In Proceedings of International Joint Conference on Neural Networks (IJCNN
2003), volume 2, pages 1605–10, Portland, OR, 2003.

190. J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods: Support Vector Learning, pages 185–208. MIT
Press, Cambridge, MA, 1999.

191. J. C. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classi-
fiers, pages 61–73. MIT Press, Cambridge, MA, 2000.

192. J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for
multiclass classification. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors,
Advances in Neural Information Processing Systems 12, pages 547–53. MIT
Press, Cambridge, MA, 2000.

193. M. Pontil and A. Verri. Properties of support vector machines. Neural Com-
putation, 10(4):955–74, 1998.

194. M. Pontil and A. Verri. Support vector machines for 3-D object recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6):637–
46, 1998.

195. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing, second edition. Cambridge
University Press, Cambridge, UK, 1992.

196. T. Raicharoen and C. Lursinsap. Critical support vector machine without
kernel function. In Proceedings of the Ninth International Conference on Neural

332 References

Information Processing (ICONIP ’02), volume 5, pages 2532–6, Singapore,
2002.

197. A. Rakotomamonjy. Variable selection using SVM-based criteria. Journal of
Machine Learning Research, 3:1357–70, 2003.

198. L. Ralaivola and F. d’Alché-Buc. Incremental support vector machine learning:
A local approach. In G. Dorffner, H. Bischof, and K. Hornik, editors, Artificial
Neural Networks (ICANN 2001)—Proceedings of International Conference, Vi-
enna, Austria, pages 322–30. Springer-Verlag, Berlin, Germany, 2001.

199. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, 2001.

200. G. Rätsch, A. J. Smola, and S. Mika. Adapting codes and embeddings for
polychotomies. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15, pages 529–36. MIT Press, Cam-
bridge, MA, 2003.

201. R. M. Rifkin, M. Pontil, and A. Verri. A note on support vector machine
degeneracy. In O. Watanabe and T. Yokomori, editors, Proceedings of the
Tenth International Conference on Algorithmic Learning Theory (ALT ’99),
Tokyo, Japan, pages 252–63. Springer-Verlag, Berlin, Germany, 1999.

202. B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, UK, 1996.

203. D. Roobaert. DirectSVM: A fast and simple support vector machine percep-
tron. In Neural Networks for Signal Processing X—Proceedings of the 2000
IEEE Signal Processing Society Workshop, volume 1, pages 356–65, 2000.

204. R. Rosipal, M. Girolami, and L. J. Trejo. Kernel PCA feature extraction of
event-related potentials for human signal detection performance. In H. Malm-
gren, M. Borga, and L. Niklasson, editors, Artificial Neural Networks in
Medicine and Biology—Proceedings of the ANNIMAB-1 Conference, Göteborg,
Sweden, pages 321–6. Springer-Verlag, Berlin, Germany, 2000.

205. R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki. Kernel PCA for fea-
ture extraction and de-noising in nonlinear regression. Neural Computing &
Applications, 10(3):231–43, 2001.

206. A. Ruiz and P. E. López de Teruel. Nonlinear kernel-based statistical pattern
analysis. IEEE Transactions on Neural Networks, 12(1):16–32, 2001.

207. M. Rychetsky, S. Ortmann, M. Ullmann, and M. Glesner. Accelerated training
of support vector machines. In Proceedings of International Joint Conference
on Neural Networks (IJCNN ’99), volume 2, pages 998–1003, Washington, DC,
1999.

208. K. Saadi, G. C. Cawley, and L. C. Talbot. Fast exact leave-one-out cross-
validation of least-squares support vector machines. In Proceedings of the Tenth
European Symposium on Artificial Neural Networks (ESANN 2002), pages 149–
54, Bruges, Belgium, 2002.

209. K. Saadi, N. L. C. Talbot, and G. C. Cawley. Optimally regularised kernel fisher
discriminant analysis. In Proceedings of the Seventeenth International Confer-
ence on Pattern Recognition (ICPR 2004), volume 2, pages 427–30, Cambridge,
UK, 2004.

210. C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola.
Support vector machine reference manual. Technical Report CSD-TR-98-03,
Royal Holloway, University of London, London, 1998.

References 333

211. B. Schölkopf, P. Bartlett, A. Smola, and R. Williamson. Support vector regres-
sion with automatic accuracy control. In Proceedings of the Eighth Interna-
tional Conference on Artificial Neural Networks (ICANN ’98), volume 2, pages
111–6, Skövde, Sweden, 1998.

212. B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel
Methods: Support Vector Learning. MIT Press, Cambridge, MA, 1999.

213. B. Schölkopf, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Kernel-
dependent support vector error bounds. In Proceedings of the Ninth Interna-
tional Conference on Artificial Neural Networks (ICANN ’99), volume 1, pages
103–8, Edinburgh, UK, 1999.

214. B. Schölkopf, P. Simard, A. Smola, and V. Vapnik. Prior knowledge in support
vector kernels. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Ad-
vances in Neural Information Processing Systems 10, pages 640–6. MIT Press,
Cambridge, MA, 1998.

215. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

216. B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel principal component
analysis. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods: Support Vector Learning, pages 327–52. MIT Press, Cam-
bridge, MA, 1999.

217. A. Schwaighofer and V. Tresp. The Bayesian committee support vector ma-
chine. In G. Dorffner, H. Bischof, and K. Hornik, editors, Artificial Neural
Networks (ICANN 2001)—Proceedings of International Conference, Vienna,
Austria, pages 411–20. Springer-Verlag, Berlin, Germany, 2001.

218. F. Schwenker. Hierarchical support vector machines for multi-class pat-
tern recognition. In Proceedings of the Fourth International Conference
on Knowledge-Based Intelligent Engineering Systems and Allied Technologies
(KES 2000), volume 2, pages 561–5, Brighton, UK 2000.

219. F. Schwenker. Solving multi-class pattern recognition problems with tree struc-
tured support vector machines. In B. Radig and S. Florczyk, editors, Pattern
Recognition 2001, pages 283–90. Springer-Verlag, Berlin, Germany, 2001.

220. M. Seeger. Bayesian model selection for support vector machines, Gaussian
processes and other kernel classifiers. In S. A. Solla, T. K. Leen, and K.-R.
Müller, editors, Advances in Neural Information Processing Systems 12, pages
603–9. MIT Press, Cambridge, MA, 2000.

221. X. Shao and V. Cherkassky. Multi-resolution support vector machine. In
Proceedings of International Joint Conference on Neural Networks (IJCNN
’99), volume 2, pages 1065–70, Washington, DC, 1999.

222. A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi. Incremental training
of support vector machines. In Proceedings of International Joint Conference
on Neural Networks (IJCNN ’01), Washington, DC, 2001.

223. H. Shimodaira, K. Noma, M. Nakai, and S. Sagayama. Dynamic time-
alignment kernel in support vector machine. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems
14, volume 2, pages 921–8, MIT Press, Cambridge, MA, 2002.

224. T. Shimozaki, T. Takigawa, and S. Abe. A fuzzy classifier with polyhedral
regions. Transactions of the Institute of Systems, Control and Information
Engineers, 14(7):365–72, 2001 (in Japanese).

225. H. Shin and S. Cho. How many neighbors to consider in pattern pre-selection
for support vector classifiers? In Proceedings of International Joint Conference

334 References

on Neural Networks (IJCNN 2003), volume 1, pages 565–70, Portland, OR,
2003.

226. P. K. Simpson. Fuzzy min-max neural networks—Part 1: Classification. IEEE
Transactions on Neural Networks, 3(5):776–86, 1992.

227. N. Smith and M. Gales. Speech recognition using SVMs. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Pro-
cessing Systems 14, volume 2, pages 1197–204, MIT Press, Cambridge, MA,
2002.

228. G. F. Smits and E. M. Jordaan. Improved SVM regression using mixtures of
kernels. In Proceedings of the 2002 International Joint Conference on Neural
Networks (IJCNN ’02), volume 3, pages 2785–90, Honolulu, 2002.

229. A. Smola, B. Schölkopf, and G. Rätsch. Linear programs for automatic ac-
curacy control in regression. In Proceedings of the Ninth International Con-
ference on Artificial Neural Networks (ICANN ’99), volume 2, pages 575–80,
Edinburgh, UK, 1999.

230. A. J. Smola, O. L. Mangasarian, and B. Schölkopf. Sparse kernel feature anal-
ysis. Technical Report 99-04, University of Wisconsin, Data Mining Institute,
Madison, 1999.

231. A. J. Smola, N. Murata, B. Schölkopf, and K.-R. Müller. Asymptotically
optimal choice of ε-loss for support vector machines. In Proceedings of the
Eighth International Conference on Artificial Neural Networks (ICANN ’98),
volume 1, pages 105–10, Skövde, Sweden, 1998.

232. S. Sohn and C. H. Dagli. Advantages of using fuzzy class memberships in self-
organizing map and support vector machines. In Proceedings of International
Joint Conference on Neural Networks (IJCNN ’01), volume 3, pages 1886–90,
Washington, DC, 2001.

233. S.-Y. Sun, C. L. Tseng, Y. H. Chen, S. C. Chuang, and H. C. Fu. Cluster-
based support vector machines in text-independent speaker identification. In
Proceedings of International Joint Conference on Neural Networks (IJCNN
2004), volume 1, pages 729–34, Budapest, Hungary, 2004.

234. J. A. K. Suykens. Least squares support vector machines for classification and
nonlinear modelling. Neural Network World, 10(1–2):29–47, 2000.

235. J. A. K. Suykens, L. Lukas, and J. Vandewalle. Sparse least squares support
vector machine classifiers. In Proceedings of the Eighth European Symposium
on Artificial Neural Networks (ESANN 2000), pages 37–42, Bruges, Belgium,
2000.

236. J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Van-
dewalle. Least Squares Support Vector Machines. World Scientific Publishing,
Singapore, 2002.

237. J. A. K. Suykens and J. Vandewalle. Least squares support vector machine
classifiers. Neural Processing Letters, 9(3):293–300, 1999.

238. J. A. K. Suykens and J. Vandewalle. Multiclass least squares support vector
machines. In Proceedings of International Joint Conference on Neural Networks
(IJCNN ’99), volume 2, pages 900–3, Washington, DC, 1999.

239. J. A. K. Suykens and J. Vandewalle. Training multilayer perceptron classifiers
based on a modified support vector method. IEEE Transactions on Neural
Networks, 10(4):907–11, 1999.

240. F. Takahashi and S. Abe. Decision-tree-based multiclass support vector ma-
chines. In Proceedings of the Ninth International Conference on Neural Infor-
mation Processing (ICONIP ’02), volume 3, pages 1418–22, Singapore, 2002.

References 335

241. F. Takahashi and S. Abe. Optimizing directed acyclic graph support vector
machines. In Proceedings of Artificial Neural Networks in Pattern Recognition
(ANNPR 2003), pages 166–70, Florence, Italy, 2003.

242. F. Takahashi and S. Abe. Optimal structure of decision-tree-based pairwise
support vector machines. Transactions of the Institute of Systems, Control and
Information Engineers, 17(3):122–30, 2004 (in Japanese).

243. T. Takahashi and T. Kurita. Robust de-noising by kernel PCA. In J. R. Dor-
ronsoro, editor, Artificial Neural Networks (ICANN 2002)—Proceedings of In-
ternational Conference, Madrid, Spain, pages 739–44. Springer-Verlag, Berlin,
Germany, 2002.

244. H. Takenaga, S. Abe, M. Takatoo, M. Kayama, T. Kitamura, and Y. Okuyama.
Input layer optimization of neural networks by sensitivity analysis and its appli-
cation to recognition of numerals. Electrical Engineering in Japan, 111(4):130–
8, 1991.

245. T. Takigawa and S. Abe. High speed training of a fuzzy classifier with polyhe-
dral regions. Transactions of the Institute of Systems, Control and Information
Engineers, 15(12):673–80, 2002 (in Japanese).

246. D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern
Recognition Letters, 20(11–13):1191–9, 1999.

247. D. M. J. Tax and R. P. W. Duin. Outliers and data descriptions. In Proceedings
of the Seventh Annual Conference of the Advanced School for Computing and
Imaging, pages 234–41, Heijen, the Netherlands, 2001.

248. D. M. J. Tax and P. Juszczak. Kernel whitening for one-class classification.
In S.-W. Lee and A. Verri, editors, Pattern Recognition with Support Vector
Machines: First International Workshop, SVM 2002, Niagara Falls, pages 40–
52. Springer-Verlag, Berlin, Germany, 2002.

249. T. B. Trafalis and H. Ince. Benders decomposition technique for support vector
regression. In Proceedings of the 2002 International Joint Conference on Neural
Networks (IJCNN ’02), volume 3, pages 2767–72, Honolulu, 2002.

250. D. Tsujinishi and S. Abe. Fuzzy least squares support vector machines. In
Proceedings of International Joint Conference on Neural Networks (IJCNN
2003), volume 2, pages 1599–604, Portland, OR, 2003.

251. D. Tsujinishi and S. Abe. Fuzzy least squares support vector machines for
multiclass problems. Neural Networks, 16(5–6):785–92, 2003.

252. D. Tsujinishi, Y. Koshiba, and S. Abe. Why pairwise is better than one-
against-all or all-at-once. In Proceedings of International Joint Conference on
Neural Networks (IJCNN 2004), volume 1, pages 693–8, Budapest, Hungary,
2004.

253. V. Uebele, S. Abe, and M.-S. Lan. A neural-network-based fuzzy classifier.
IEEE Transactions on Systems, Man, and Cybernetics, 25(2):353–61, 1995.

254. R. J. Vanderbei. LOQO: An interior point code for quadratic programming.
Technical Report SOR-94-15, Princeton University, 1998.

255. R. J. Vanderbei. Linear Programming: Foundations and Extensions, second
edition. Kluwer Academic Publishers, Norwell, MA, 2001.

256. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

257. V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York,
1998.

336 References

258. V. Vapnik and O. Chapelle. Bounds on error expectation for SVM. In A. J.
Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 261–80. MIT Press, Cambridge, MA, 2000.

259. K. Veropoulos. Machine learning approaches to medical decision making. Ph.D
thesis, Department of Computer Science, University of Bristol, UK, 2001.

260. K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitivity of
support vector machines. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99), Workshop ML3, pages 55–60,
1999.

261. S. V. N. Vishwanathan and M. N. Murty. SSVM: A simple SVM algorithm.
In Proceedings of the 2002 International Joint Conference on Neural Networks
(IJCNN ’02), volume 2, pages 2393–8, Honolulu, 2002.

262. M. Vogt. SMO algorithms for support vector machines without bias term.
Technical report, Institute of Automatic Control, TU Darmstadt, Germany,
2002.

263. V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications
of algorithmic randomness. In I. Bratko and S. Dzeroski, editors, Machine
Learning, Proceedings of the Sixteenth International Conference (ICML ’99),
pages 444–53. Morgan Kaufmann, San Francisco, 1999.

264. S. M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition,
neural nets, and machine learning classification methods. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pages 781–7,
Detroit, 1989.

265. J. Weston. Leave-one-out support vector machines. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99),
volume 2, pages 727–33, Stockholm, Sweden, 1999.

266. J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of the zero-norm
with linear models and kernel methods. Journal of Machine Learning Research,
3:1439–61, 2003.

267. J. Weston and R. Herbrich. Adaptive margin support vector machines. In A. J.
Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 281–95. MIT Press, Cambridge, MA, 2000.

268. J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik.
Feature selection for SVMs. In T. K. Leen, T. G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 668–74.
MIT Press, Cambridge, MA, 2001.

269. J. Weston and C. Watkins. Multi-class support vector machines. Technical
Report CSD-TR-98-04, Royal Holloway, University of London, London, 1998.

270. J. Weston and C. Watkins. Support vector machines for multi-class pattern
recognition. In Proceedings of the Seventh European Symposium on Artificial
Neural Networks (ESANN 1999), pages 219–24, Bruges, Belgium, 1999.

271. T. Windeatt and F. Roli, editors. Multiple Classifier Systems—Proceedings
of the fourth International Workshop, MCS 2003, Guildford, UK. Springer-
Verlag, Berlin, Germany, 2003.

272. S. J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

273. R. Xiao, J. Wang, and F. Zhang. An approach to incremental SVM learning
algorithm. In Proceedings of the Twelfth IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2000), pages 268–73, Vancouver, BC,
Canada, 2000.

References 337

274. J. Xu, X. Zhang, and Y. Li. Large margin kernel pocket algorithm. In Pro-
ceedings of International Joint Conference on Neural Networks (IJCNN ’01),
volume 2, pages 1480–5, Washington, DC, 2001.

275. P. Xu and A. K. Chan. Support vector machines for multi-class signal classi-
fication with unbalanced samples. In Proceedings of International Joint Con-
ference on Neural Networks (IJCNN 2003), volume 2, pages 1116–9, Portland,
OR, 2003.

276. J. Yang, V. Estivill-Castro, and S. K. Chalup. Support vector clustering
through proximity graph modelling. In Proceedings of the Ninth International
Conference on Neural Information Processing (ICONIP ’02), volume 2, pages
898–903, Singapore, 2002.

277. M.-H. Yang and N. Ahuja. A geometric approach to train support vector
machines. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 430–7, 2000.

278. Z. Ying and K. C. Keong. Fast leave-one-out evaluation and improvement on
inference for LS-SVMs. In Proceedings of the Seventeenth International Confer-
ence on Pattern Recognition (ICPR 2004), volume 3, pages 494–7, Cambridge,
UK, 2004.

279. S. Young and T. Downs. CARVE—A constructive algorithm for real-valued
examples. IEEE Transactions on Neural Networks, 9(6):1180–90, 1998.

280. C. Yuan and D. Casasent. Support vector machines for class representation
and discrimination. In Proceedings of International Joint Conference on Neural
Networks (IJCNN 2003), volume 2, pages 1611–6, Portland, OR, 2003.

281. P. Zhang and J. Peng. SVM vs regularized least squares classification. In Pro-
ceedings of the Seventeenth International Conference on Pattern Recognition
(ICPR 2004), volume 1, pages 176–9, Cambridge, UK, 2004.

282. P. Zhang, J. Peng, and C. Domeniconi. Dimensionality reduction using kernel
pooled local discriminant information. In Proceedings of the Third IEEE Inter-
national Conference on Data Mining (ICDM 2003), pages 701–4, Melbourne,
FL, 2003.

283. W. Zhang and I. King. Locating support vectors via β-skeleton technique.
In Proceedings of the Ninth International Conference on Neural Information
Processing (ICONIP ’02), volume 3, pages 1423–7, Singapore, 2002.

284. X. Zhang. Using class-center vectors to build support vector machines. In Neu-
ral Networks for Signal Processing IX—Proceedings of the 1999 IEEE Signal
Processing Society Workshop, pages 3–11, 1999.

285. W. Zhou, L. Zhang, and L. Jiao. Linear programming support vector machines.
Pattern Recognition, 35(12):2927–36, 2002.

Index

χ-square distribution, 153
ν-support vector regressor, 281
ε-insensitive zone, 266
k nearest neighbors, 156, 208
k-means clustering algorithm, 91, 155,

207
kernel, 209

k-nearest neighbor classifier, 298

active data, 227
ADAG, see adaptive directed acyclic

graph
adaptive directed acyclic graph, 106
Adatron, 165

kernel, 166, 273
all-at-once formulation, 9
average operator, 87, 98, 133

back-propagation algorithm, 223, 226
backward selection, 189
bag of words, 29
barrier objective function, 169
Bayes’ decision rule, 297
Bayes’ rule, 151, 297
Bayes’ theory, 150
Bayesian classifier, 297
BCH code, 116
between-class scatter matrix, 197
bias neuron, 224
bias term, 150, 166

explicit, 33
implicit, 33

blood cell data, 12, 65, 158
boosting, 153

bootstrap, 77
boundary data, 156
boundary vector, 52
branch-and-bound technique, 190

CARVE, 223
CARVE algorithm, 223
CARVE condition, 227
center, 156, 239
central moment, 12
central path, 169
characteristic equation, 302
Cholesky factorization, 181, 211, 217,

218, 276
chunking

fixed-size, 160
variable-size, 160

class, 3
abnormal, 65
normal, 65

class boundary, 70
class separability, 150
code word

continuous, 83
discrete, 83

committee machine, 153
complementarity condition, 169, 187
complementary subspace, 241
complete graph, 208
concave minimization, 194
conditional cost, 297
confidence interval, 75
constructive algorithm for real-valued

examples, see CARVE

340 Index

convex hull, 58, 167, 253
expanded, 257

correcting classifier, 112
covariance matrix, 93, 156, 240, 298,

305, 306
critical region, 153
cross-validation

k-fold, 73

decision directed acyclic graph, 103
decision function, 3, 5, 15

Bayesian, 150
continuous, 85
direct, 3, 5, 40, 83
discrete, 84
indirect, 3, 4
nonlinear, 11
optimal, 10

decision tree, 7
formulation, 7

decomposition, 159
degenerate solution, 61, 142, 229
Delaunay diagram, 208
denoising, 218
determinant, 302
direct SVM, see support vector

machine, direct
discriminant analysis

kernel, 65, 196, 209
distance

mean square weighted, 306
tuning, 240

domain description, 201
don’t care bit, 9
dot-product space, 25
dual problem, 18, 24, 26, 120, 122, 168,

171, 206, 269
dual variable, 168, 172
duality gap, 21, 169

zero, 19
dynamic programming, 29

ECOC, see error-correcting output code
eigenvalue, 302, 307

accumulation, 217
generalized, 198, 217

eigenvector, 302, 304
empirical error, 75
error function, 265

error rate
LOO, 75

error-correcting output code, 9, 113,
129

Euclidean distance, 16, 78, 91, 299
exception ratio, 189
expansion parameter, 257
extrapolation, 280

feasible solution, 17
feature, 3
feature extraction, 189
feature selection, 189

forward, 195
procedure, 189

feature space, 11, 25
forward selection, 190
function approximation, 265
fuzzy c-means clustering algorithm, 207
fuzzy rule, 239

generalization ability, 10, 15, 39, 260
generalization region, 16, 20, 25
generalized eigenvalue problem, 198
guard vector, 156

Hamming distance, 114
hard margin, 75
Hausdorff kernel, 29
Hessian matrix, 178
hidden layer, 224
hidden neuron, 28, 224
Hilbert-Schmidt theory, 25
hiragana data, 12
hyperellipsoid, 70
hyperparabola, 70
hyperplane

negative side, 5
optimal separating, 15, 16, 17
positive side, 5
separating, 16, 18
soft-margin, 23

i.i.d. process, see independent and
identically distributed process

image processing, 29
imbalanced data, 65
inactive data, 227
independent and identically distributed

process, 153

Index 341

inequality constraint
active, 310
inactive, 310

input layer, 224
input neuron, 28, 224
interpolation, 280
invariance, 77

linear transformation, 77
rotation, 78
scale, 78, 299
translation, 78

iris data, 11, 158

Kalman filter, 273
Karush-Kuhn-Tucker condition, see

KKT condition
complementarity, see KKT condition,

complementarity
kernel, 26

generalized RBF, 77
histogram intersection, 29
linear, 27
Mahalanobis, 29, 77
mismatch, 29
normalizing, 30
polynomial, 27
RBF, 27

kernel matrix, 38, 212
kernel self-organizing map, 209
kernel trick, 26, 317
kernel-based method, 209
KKT condition, 18, 23, 37, 52, 57, 160,

162, 202
complementarity, 18, 37, 42, 120, 121,

270, 272, 275, 278
exact, 162, 278
inexact, 162, 278

KPCA, see principal component
analysis, kernel

Kronecker’s delta function, 38, 272

L1 SVM, see support vector machine,
L1 soft-margin

L2 SVM, see support vector machine,
L2 soft-margin

Lagrange multiplier, 18, 23, 119, 121,
130, 135, 205, 269, 271, 282, 284,
309

learning rate, 226

least squares, 303
kernel, 209
regularized, 212

least-recently used strategy, 146
leave-one-out method, 73, 302
level of significance, 153
linear dependence, 301
linear discriminant analysis, 196
linear independence, 301
linear programming, 223
linear separability, 5
LOO, see leave-one-out method
LP SVM, see support vector machine,

linear programming
LRU, see least-recently used strategy
LS SVR, see support vector regressor,

least squares

M-estimator, 28
Mackey-Glass differential equation, 12
Mahalanobis distance, 77, 92, 156

kernel, 218, 240, 244
Mangasarian and Musicant’s model, 34,

165
Manhattan distance, 299
mapping

many-to-one, 31
margin, 16, 31, 267

slope, 244
margin parameter, 23, 119, 127, 135,

205
matrix

inverse, 301
nonsingular, 301
orthogonal, 301
positive semidefinite, 42
regular, 301
singular, 301
symmetric, 301
transpose, 301
unit, 301

matrix inversion lemma, 74, 302
medical diagnosis, 65
membership function, 85, 240

one-dimensional, 86, 97
Mercer kernel, 26
Mercer’s condition, 25, 28, 223, 271, 284
minimum operator, 87, 98, 133
minimum spanning tree, 208

342 Index

mismatch kernel, 29
model selection, 40, 72, 272
multiclass problem, 5
multiclass support vector machine, 83

nearest neighbor classifier, 298
neural network

multilayer, 10, 223
radial basis function, 210, 212
three-layer, 28

Newton’s method, 170, 178
nonunique solution, 63
normal distribution, 298
normal test, 152
normalized root-mean-square error, 12
NRMSE, see normalized root-mean-

square error
numeral data, 12

one-against-all formulation, 6
optimal classifier, 73
optimal hyperplane, 11
optimum solution, 47

global, 26
outlier, 16, 39
output function, 225
output layer, 224
output neuron, 224, 226
overfitting, 15, 212

pairwise classification
decision-tree-based, 103

pairwise coupling classification, 112
pairwise formulation, 7
perceptron, 165
positive definiteness, 302, 306
positive semidefinite kernel, 26, 313

conditionally, 313
positive semidefiniteness, 302, 303

conditionally, 41
preimage, 32, 33, 218
primal problem, 168, 171
primal-dual interior-point method, 127,

185
primal-dual problem, 169, 172
principal component, 215

kernel, 215, 217
principal component analysis, 195, 215

kernel, 195, 204, 215

probability
a posteriori, 297
a priori, 65, 297

protein classification, 29
proximity graph, 208
pseudo-inverse, 199, 211, 305

quadratic form, 302
quadratic programming, 18

concave, 19, 26
problem, 309

radial basis function, 27
RBF, see radial basis function
regularization parameter, 193, 194
regularization term, 15, 212
reproducing kernel Hilbert space, 313
resampling, 64, 65
robust statistics, 28

saddle point, 18, 310
scaling, 158
selection criterion, 189

monotonic, 190
sequential minimal optimization, 166,

273, 274
sigmoid function, 223, 225
sign function, 8
simplex method, 188
singular value decomposition, 220, 303
slack variable, 168, 172, 205
SMO, see sequential minimal optimiza-

tion
speech recognition, 29
steepest descent, 226
successive overrelaxation, 166
sum-of-squares error, 226, 303
support vector, 18, 19, 271, 272

bounded, 24, 208, 271
irreducible, 53
unbounded, 24, 271
virtual, 149

support vector graph, 208
support vector machine, 15

Bayesian, 150
cluster-based, 102
decision-tree-based, 91
direct, 166
hard-margin, 15, 19, 38
L1 soft-margin, 22, 23

Index 343

L2 soft-margin, 23, 37
least squares, 129
linear programming, 140
median, 149
multiresolution, 280
one-against-all, 84
pairwise, 96

support vector regressor, 269
L1 soft-margin, 269
L2 soft-margin, 269
least squares, 283
linear programming, 281

support vector representation machine,
205

SVD, see singular value decomposition
SVM, see support vector machine
SVR, see support vector regressor
SVRM, see support vector representa-

tion machine

text classification, 29
thyroid data, 12, 160, 195
Toeplitz block matrix, 273

tolerance of convergence
output neuron output, 226
variable, 181

trace, 217
training, 10

epoch, 181
tuning parameter, 240
two-class problem, 3, 15

unclassifiable region, 6, 8, 87, 97

Vapnik-Chervonenkis dimension, see
VC dimension

VC dimension, 74
vector quantization, 77
violating set, 163
Voronoi diagram, 208
voting, 8

wavelet analysis, 280
weight, 28, 224, 226
within-class scatter matrix, 197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

